
DISTRIBUTED AND ADAPTIVE TRAFFIC SIGNAL

CONTROL WITHIN A REALISTIC TRAFFIC SIMULATION

by

Dave McKenney

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of

the requirements for the degree of

MASTER OF COMPUTER SCIENCE

School of Computer Science

at

CARLETON UNIVERSITY

Ottawa, Ontario

September, 2011

c⃝ Copyright by Dave McKenney, 2011



Table of Contents

List of Tables vii

List of Figures ix

Abstract xii

Acknowledgements xiii

Chapter 1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Background 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Traffic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Traffic Light Optimization . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Phase Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 Safety Requirements . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Traffic Light Optimization Architecture . . . . . . . . . . . . . . . . . 9

2.4.1 Fixed-time strategies . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Traffic Responsive Strategies . . . . . . . . . . . . . . . . . . . 11

2.5 Computational Approaches to Traffic Light Optimization . . . . . . . 12

2.5.1 Multi-agent Systems . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Evolutionary Computing . . . . . . . . . . . . . . . . . . . . . 13

ii



2.5.3 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.4 Swarm Intelligence . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Traffic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Microscopic Simulation . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Macroscopic Simulation . . . . . . . . . . . . . . . . . . . . . 20

2.6.3 Mesoscopic Simulation . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3 Related Work 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Reservation Based Systems . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Market-based Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Self-organizing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Swarm Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Decision Support Systems . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4 A Simple Adaptive Algorithm for Traffic Control 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 NetLogo and the Traffic Grid Model . . . . . . . . . . . . . . . . . . . 52

4.2.1 Traffic Grid Driver Behaviour . . . . . . . . . . . . . . . . . . 54

4.2.2 Traffic Grid Network . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Traffic Grid Signal Control . . . . . . . . . . . . . . . . . . . . 54

4.3 Traffic Grid Model Changes . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Vehicle Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Intersection Agent Behaviour . . . . . . . . . . . . . . . . . . 55

4.4 System Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iii



4.4.1 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Model Control Algorithm . . . . . . . . . . . . . . . . . . . . 59

4.4.3 Signal Plan Calculation . . . . . . . . . . . . . . . . . . . . . 59

4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 5 Modelling a Realistic Traffic Scenario in SUMO 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Reasons for Choosing Sumo . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Included Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Model Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Network Selection . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.2 Network Modelling . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.3 Traffic Volume Creation . . . . . . . . . . . . . . . . . . . . . 78

5.4.4 Scenario Creation . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 6 Distributed Adaptive Traffic Control Algorithm 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . 85

6.3 An Improved Intersection Control Agent . . . . . . . . . . . . . . . . 86

6.3.1 Constant Information . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.2 Observed and Calculated Information . . . . . . . . . . . . . . 87

6.4 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Key Algorithm Characteristics . . . . . . . . . . . . . . . . . . . . . . 91

6.5.1 Adaptive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5.2 Distributed Control . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5.3 Local Computation and Communication . . . . . . . . . . . . 93

6.6 Intersection Control Agent Update Loop . . . . . . . . . . . . . . . . 93

6.7 Intersection Control Update Algorithm . . . . . . . . . . . . . . . . . 94

iv



6.7.1 Volume Calculation . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7.2 Timing Calculation . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7.3 Simple Average (SA) . . . . . . . . . . . . . . . . . . . . . . . 98

6.7.4 Time Sensitive Average (TS) . . . . . . . . . . . . . . . . . . 99

6.7.5 Unbiased Time Sensitive Average (UTS) . . . . . . . . . . . . 99

6.7.6 Alpha-Beta Filter (AB) . . . . . . . . . . . . . . . . . . . . . 100

6.7.7 Neighbour Communicated Volumes (NCV ) . . . . . . . . . . 101

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 7 Experimental Results 104

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Parameter Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 105

7.3.1 Window Length . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.2 Observation Interval . . . . . . . . . . . . . . . . . . . . . . . 107

7.3.3 Observed Data . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.4 Edge Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.5 Update Interval . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.6 Volume Calculation Method . . . . . . . . . . . . . . . . . . . 114

7.4 Alpha-Beta Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 116

7.5 Fixed City Plans vs. Adaptive Control . . . . . . . . . . . . . . . . . 117

7.5.1 Average Simulation Speed Comparison . . . . . . . . . . . . . 119

7.5.2 Examples of Fixed Signal Plan Failure . . . . . . . . . . . . . 120

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Chapter 8 Conclusions and Future Work 126

8.1 Summary of Key Contributions . . . . . . . . . . . . . . . . . . . . . 126

8.1.1 Review of Previous Intelligent Traffic Signal Control Work . . 126

8.1.2 Real-World Traffic Model . . . . . . . . . . . . . . . . . . . . 127

8.1.3 Algorithm Development and Experimentation . . . . . . . . . 127

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

v



8.2.1 Intelligent Signal Control . . . . . . . . . . . . . . . . . . . . . 128

8.2.2 Traffic Simulation and Modelling . . . . . . . . . . . . . . . . 129

8.2.3 Intelligent Traffic Systems . . . . . . . . . . . . . . . . . . . . 131

Bibliography 133

Appendix A Further Examples of Fixed vs. Adaptive Signal Plans 141

vi



List of Tables

Table 2.1 Summary of attributes for various microscopic traffic simulators 17

Table 2.2 An example origin-destination matrix for 5 areas within a network 19

Table 2.3 An example table used for turning ratio calculation and route

generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 3.1 Advantages and disadvantages of using an evolutionary comput-

ing approach for intelligent traffic signal control . . . . . . . . . 26

Table 3.2 Advantages and disadvantages of using a reservation-based ap-

proach for intelligent traffic signal control . . . . . . . . . . . . 29

Table 3.3 Advantages and disadvantages of using a market-based approach

for intelligent traffic signal control . . . . . . . . . . . . . . . . 32

Table 3.4 Advantages and disadvantages of using a self-organizing system

for intelligent traffic signal control . . . . . . . . . . . . . . . . 35

Table 3.5 Advantages and disadvantages of using swarm intelligence for

intelligent traffic signal control . . . . . . . . . . . . . . . . . . 37

Table 3.6 Advantages and disadvantages of using fuzzy logic for intelligent

traffic signal control . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 3.7 Advantages and disadvantages of using a decision support sys-

tem for intelligent traffic signal control . . . . . . . . . . . . . . 43

Table 3.8 Advantages and disadvantages of using reinforcement learning

for intelligent traffic signal control . . . . . . . . . . . . . . . . 47

Table 3.9 Advantages and disadvantages of using neural networks for in-

telligent traffic signal control . . . . . . . . . . . . . . . . . . . 50

Table 4.1 NetLogo simulation results for each algorithm/distribution com-

bination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 5.1 An example of the available traffic volume data for each inter-

section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vii



Table 7.1 Window Length Simulation Parameters . . . . . . . . . . . . . 106

Table 7.2 Observation Interval Simulation Parameters . . . . . . . . . . . 108

Table 7.3 Observed Data Simulation Parameters . . . . . . . . . . . . . . 110

Table 7.4 Edge Balance Simulation Parameters . . . . . . . . . . . . . . . 112

Table 7.5 Update Interval Simulation Parameters . . . . . . . . . . . . . 113

Table 7.6 Volume Calculation Method Simulation Parameters . . . . . . 116

Table 7.7 Example signal plans for an intersection . . . . . . . . . . . . . 118

Table 7.8 Example weekday signal plan schedule for an intersection . . . 119

Table 7.9 System parameter values used when comparing to fixed signal

plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

viii



List of Figures

Figure 2.1 Example of cycle and phase relationship with traffic flows which

can (white) and cannot (black) proceed . . . . . . . . . . . . . 7

Figure 2.2 A simple responsive traffic system architecture . . . . . . . . . 12

Figure 2.3 An example fuzzy membership function . . . . . . . . . . . . . 15

Figure 3.1 Example of a chromosome encoding phase lengths for a traffic

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.2 An example network with different reservation costs at different

intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.3 Flowchart for the system developed by Almejalli et al. (2007a,

2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.4 Architecture of the hierarchical decision support system imple-

mented by Almejalli et al. (2009) . . . . . . . . . . . . . . . . 44

Figure 3.5 Example fuzzy neural network taking 4 inputs and determining

phase extension . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.1 A screenshot of the initial NetLogo Traffic Grid model . . . . 53

Figure 4.2 Information flow through the NetLogo network model . . . . . 57

Figure 4.3 NetLogo proportional algorithm vs. best other algorithm, shown

with 1 standard deviation error bars . . . . . . . . . . . . . . 66

Figure 5.1 Several SUMO modules which may be modified to produce new

behaviour/features . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.2 Flowchart showing the movement from initial network identifi-

cation to simulation . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.3 An outline from Google Maps of the traffic area modelled . . . 74

Figure 5.4 Example of intersections on Bay St. and Elgin St. from Google

StreetView . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.5 The initial SUMO network after OpenStreetMap import . . . 77

ix



Figure 5.6 The final SUMO network used for experimental tests . . . . . 79

Figure 5.7 Volumes inferred (in red) for an intersection based on known

neighbour volumes (in black) . . . . . . . . . . . . . . . . . . . 80

Figure 5.8 An example of flow computation for the four incoming edges of

an intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 6.1 Example of an intersection with four groups, showing the four

corresponding signal sets . . . . . . . . . . . . . . . . . . . . 88

Figure 6.2 Flowchart detailing the process of signal plan calculation, with

possible dynamic extensions included in red . . . . . . . . . . 96

Figure 7.1 Summary of window length parameter investigations showing

average speed attained with 1 SD error bars . . . . . . . . . . 107

Figure 7.2 Summary of observation interval parameter investigations show-

ing average speed attained with 1 SD error bars . . . . . . . . 109

Figure 7.3 Summary of observed data parameter investigations showing

average speed attained with 1 SD error bars . . . . . . . . . . 111

Figure 7.4 Summary of edge balancing parameter evaluations showing av-

erage speed attained with 1 SD error bars . . . . . . . . . . . 113

Figure 7.5 Summary of update interval parameter evaluations showing av-

erage speed attained with 1 SD error bars . . . . . . . . . . . 115

Figure 7.6 Summary of average speed (with 1 SD error bars) attained using

various volume calculation methods . . . . . . . . . . . . . . 117

Figure 7.7 Average speed attained using various alpha/beta combinations 118

Figure 7.8 Aggregated average simulation speed over 15 minute intervals

for both fixed and adaptive lights . . . . . . . . . . . . . . . . 120

Figure 7.9 Average increase in speed when using adaptive signal control 121

Figure 7.10 Distribution showing number of intervals with certain speed

increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 7.11 Aggregate average number of vehicles and speed on a single

section of road using fixed and adaptive signal plans . . . . . 124

x



Figure 7.12 Aggregate average number of vehicles and speed for an entire

street using fixed and adaptive signal plans . . . . . . . . . . 125

Figure A.1 Aggregate average number of vehicles and speed for Wellington

between Kent and Bank . . . . . . . . . . . . . . . . . . . . . 142

Figure A.2 Aggregate average number of vehicles and speed for Wellington

between Bay and Lyon . . . . . . . . . . . . . . . . . . . . . . 143

Figure A.3 Aggregate average number of vehicles and speed for Queen be-

tween West and Bay . . . . . . . . . . . . . . . . . . . . . . . 144

Figure A.4 Aggregate average number of vehicles and speed for Laurier

between Metcalfe and O’Connor . . . . . . . . . . . . . . . . 145

Figure A.5 Aggregate average number of vehicles and speed for the entirety

of Laurier Ave. . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xi



Abstract

Left unmanaged, high vehicle volumes within urban traffic networks results in con-

gested and slow moving traffic. This, in turn, leads to many negative economical and

environmental consequences. It is important, then, to efficiently control the vehicles

within these networks. Many researchers have made an effort to improve the efficiency

of traffic signals using intelligent systems. However, many systems developed have

been evaluated using unrealistic traffic models which often include single intersections

and static traffic volumes. This thesis introduces a distributed/adaptive algorithm

which can operate within a realistic environment. A realistic model of a section of

downtown Ottawa is also developed and used to test the performance of the algo-

rithm. Through simulation, acceptable algorithm parameters are identified and the

algorithm’s performance is compared to that of a fixed controller. It is found that an

adaptive approach to signal control results in higher vehicle speeds than those found

using a fixed controller.

xii



Acknowledgements

I would like to begin by thanking my thesis supervisor, Professor Tony White. With-

out his generous guidance and support, this research would never have been possible.

I greatly enjoyed our weekly meetings, despite (or because of) the fact that the dis-

cussion would often move quickly from work to the newest Apple products. I should

also thank Professor White for the financial support he provided over the past two

years, as well as the help he provided me in finding external sources of funding as

well.

I should also thank my family for their support over the last two years (financial

and otherwise). Thanks to my Dad for constantly telling me to get a job and thank

you to my Mom for trying to explain to him what it is I actually do with my time.

Also, thank you to my brother who has entertained me, as always, with his constant

desire to pursue a new and expensive hobby (e.g., go-karting, kayak fishing).

I would also like to thank my partner, as she has been there for me whenever I

needed her. She has also been happy to distract me from my work, whether I needed

to be or not. For that reason, I would also like to wish her good luck as she heads to

graduate school, as I will be repaying the favour.

Finally, a sincere thank you must be given to the numerous people at the City of

Ottawa. Without their interest and help, this work would not be the same. I look

forward to working with them further as our research continues in the future.

xiii



Chapter 1

Introduction

1.1 Introduction

As populations within cities around the world climb, the number of vehicles present

on the roadways of these cities also increases, resulting in slow moving, congested

traffic. In fact, it has been shown that traffic jams form within a road network when

volumes become too high, even if there are no incidents or bottlenecks (Sugiyama

et al., 2008). One method of improving the traffic flow within urban environments has

been to build more roadway or to increase the size of the existing road infrastructure

(e.g., increasing the number of lanes on a busy roadway). This strategy, however,

carries a high economical penalty and also consumes a large amount of the limited

space available within an urban setting. Another method of increasing the efficiency

of a traffic network is to improve the ability of traffic control devices to efficiently

control the traffic flows within the network. One of the principal targets of this type

of optimization are the traffic signals, which control opposing traffic flows at junctions

within the network. In-car intelligence is also being increasingly investigated (e.g.,

AudiWorld, 2011) in an attempt to increase network efficiency, but this falls outside

the scope of this thesis. Pedestrian traffic can also affect the flow of traffic within a

network, but this interaction is also outside of the scope of this thesis.

A simple approach to improving traffic signal performance is to develop signal

plans based on historically measured traffic data. There are, however, several prob-

lems related to this approach. One problem with this type of solution is that the

historical data becomes inaccurate over time, leading to inefficiency within the con-

troller (Bell and Bretherton (1986) proposed a decay in performance of 3% a year).

Another problem with this type of approach is that it implements a fixed solution for

specific times within the day. Even if the historical data accurately describes the over-

all traffic volumes within the network, it is unlikely that the current traffic volumes

1



2

are exactly the same as historically predicted. This again causes inefficiency within

the signal controller, as time devoted to certain flows could be used to serve others

which currently have higher demand. Recent traffic systems research, however, aims

to develop intelligent signal control systems which are capable of monitoring traffic

state through available sensors and making control decisions based on the available

data. These intelligent systems attempt to build traffic models in real-time, creating

traffic signal plans which effectively control the volumes present within the models.

These approaches avoid the aging problem inherent in the use of historical data and,

to varying degrees, address the inefficiencies present using fixed signal plans.

The intelligent systems which have been developed for real-time signal control can

be further divided into those that are centralized in nature and those which rely on

distributed computing. Distributed systems, in the domain of traffic control, offer a

number of advantages. First, distributed computation generally allows a system to

scale much better than a centralized counterpart. This can be very important when

dealing with city-wide traffic control, where there are thousands of intersections which

require real-time observations and decisions to be made. Distributed systems are also

much more robust than centralized systems. Assuming all intersections within a city

traffic network are connected to a centralized control centre via a wired communica-

tion network, a single break in the network could eliminate the intelligent control of a

large number of intersections. If the break in communication comes extremely close to

the control centre (or the centre loses all communication abilities), the performance of

the network can significantly degrade. Distributed systems which rely strictly on local

communication, on the other hand, can deal with these communication errors much

more effectively. If a communication line links only two neighbouring intersections,

a break in the line can only effect those two intersections. This increased system

robustness can be extremely important within the traffic control domain, as even a

small malfunction at a single intersection can quickly compound into network-wide

problems.

While many intelligent control systems have been developed, much of the research

tests these systems on simple networks with theoretical (and often static) traffic vol-

umes. While these types of investigations are useful in the initial development stage,



3

solving these simple problems fail to demonstrate any real-world applicability. To im-

prove intelligent traffic system research to a point where the developed systems can

address real problems, models must be developed which reflect real-world networks

and traffic scenarios.

1.2 Goals

As mentioned above, to demonstrate true performance abilities, intelligent traffic

control systems should be tested on realistic traffic scenarios. The first goal of this

thesis, then, is to outline a methodology which can be used to develop realistic traffic

models for the testing of intelligent control systems. Second, the thesis aims to create

a multi-agent control algorithm capable of adapting signal plans in real-time based

on local traffic state observations. Finally, the performance of this algorithm will be

evaluated within a simulated environment using realistic traffic models.

1.3 Problem Statement

Many traffic control approaches rely on fixed-length signals, which fail to address real-

time traffic volumes. While many intelligent control approaches have been developed

to solve this problem, they are typically implemented and tested within small and

simple traffic simulations. These simple models fail to capture the many interactions

that may occur within a larger traffic system (e.g., interactions between intersec-

tions). Also, when using some approaches that involve centralized systems, testing

on small networks fails to demonstrate if the system is capable of scaling to control

a realistically-sized network.

This thesis creates a distributed, and thus scalable, algorithm which can adapt

traffic signal plans to fit observed traffic volumes. This thesis also develops a real-

istic traffic model on a moderately-sized (63 intersection) network to evaluate the

performance of the algorithms created.

1.4 Contributions

The following list outlines the main contributions made by this thesis.



4

• A review of previous intelligent traffic signal control methods (presented in

Chapter 3), along with the identification of the advantageous characteristics

which should be possessed by an intelligent signal control system.

• Chapter 5 describes the development of a realistic traffic model based on a

section of the downtown area of the City of Ottawa. The traffic network within

the model closely resembles the real-world network, while the vehicle routes used

within the model are generated using data provided by the City of Ottawa.

• A detailed description of the methodology used during creation of the realistic

model, which proves feasibility and provides a starting point for others who

wish to develop further models is also included within Chapter 5.

• Development of a parameterized multi-agent algorithm (see Chapter 6) which

generates signal plans based on real-time local state observations. The algorithm

is also capable of operation within complex/realistic traffic scenarios.

• Proposal (Sections 6.7.3-6.7.7) and comparison (Section 7.3.6) of a number of

volume calculation methods to be used within the main control algorithm, in-

cluding purely reactive and predictive approaches.

• Optimization of a number of algorithm parameters, along with discussion of

the effects the various parameter values have on overall system performance

(presented in Section 7.3).

• Comparison of the proposed algorithm’s performance to that of a fixed control

plan based on actual signal plans provided by the City of Ottawa (included in

Section 7.5).

1.5 Organization

The structure of the remainder of this thesis is as follows. Chapter 2 presents back-

ground material necessary to understand the work presented within the thesis. Chap-

ter 3 reviews the existing intelligent signal control research literature, with a summary

outlining preferential characteristics within an intelligent signal control system. An



5

initial algorithm is developed and evaluated within Chapter 4, showing the promise of

adaptive signal control systems. Chapter 5 details the process used in the creation of

a realistic traffic model using both openly available data and information provided by

the City of Ottawa. An adaptive multi-agent algorithm which is capable of operation

within a real-world traffic environment is presented in Chapter 6. The properties of

the proposed algorithm are investigated in detail within Chapter 7, including a per-

formance comparison between the adaptive algorithm and fixed plans created using

information supplied by the City of Ottawa. Chapter 8 concludes the thesis with

a summary of the main contributions and completed work, as well as discussion of

important future research directions in the area of intelligent traffic systems.



Chapter 2

Background

2.1 Introduction

This chapter provides a brief review of material necessary to understand the remain-

der of this thesis. This includes discussion of traffic optimization (with a focus on

traffic lights), general architectures which can be used in traffic light optimization and

background information on several computational intelligence approaches which have

been applied in the traffic optimization domain. Also included, is a discussion of traf-

fic simulation, including a summary of various traffic simulators currently available

(see Table 2.1).

The remainder of this chapter is organized as follows. Section 2.2 briefly explains

the problem of traffic optimization, while Section 2.3 focuses on traffic light optimiza-

tion specifically (including Sections 2.3.1-2.3.3 which detail the most often optimized

parameters of traffic signals). Section 2.4 discusses several of the broad architectures

which have been used for traffic light optimization, including fixed-time and traffic

responsive strategies. A discussion of a number of approaches which have been used

to develop signal controllers is included in Section 2.5. Section 2.6 introduces traf-

fic simulation, with a focus on microscopic traffic simulation (Section 2.6.1). Finally,

Section 2.7 summarizes the contents of the chapter and introduces the work presented

in the following chapter.

2.2 Traffic Optimization

The problem of traffic optimization involves any number of methods which aim to

improve the flow of vehicle traffic within a road network. These methods typically

involve influencing driver behaviour (e.g., traffic lights and signage) and making net-

work modifications (lane additions, turning lanes). While network modifications, such

6



7

Figure 2.1: Example of cycle and phase relationship with traffic flows which can
(white) and cannot (black) proceed

as lane addition, can result in drastic improvements in traffic flow, these modifica-

tions require space which is limited or non-existent in many cases. For this reason,

more effort has been placed on controlling the vehicle flows within the network more

efficiently using available traffic control devices.

2.3 Traffic Light Optimization

Traffic light optimization is one of the most effective, and thus most researched, meth-

ods of improving vehicle flow within a traffic network. For obvious safety reasons,

conflicting flows present at intersections within a traffic network require regulation

and control. The effectiveness of the control method applied to the intersections

largely determines the overall performance of the network. The three most impor-

tant parameters which determine the behaviour of a traffic signal plan are the phase

lengths, signal cycles and offset values. These parameters, as well as the effects of

their optimization, are explained below and a graphical representation is included in

Figure 2.1.

2.3.1 Phase Lengths

A phase is a time period in which certain vehicles may travel through the controlled

intersection, while others may not. Each phase has a specific set of lights which

are green and another set of lights which are red. These sets, in turn, define which

vehicles can proceed through the intersection and which vehicles must wait. Each



8

phase within a signal plan has a specified length, which determines how long that

phase will last during each light cycle. Choosing effective phase lengths allows for

improved flow of vehicles through the intersection, as more congested lanes are allowed

to proceed for a longer time than less congested lanes. Optimizing phase lengths for a

single intersection, however, can have drastic consequences at other locations within

the network as it can change the vehicle volumes at downstream intersections.

2.3.2 Cycles

A cycle is composed of a number of phases. Generally, a cycle has a fixed time

length which equals the sum of all of its phase lengths. Each traffic light typically

implements a single cycle at any given time. This cycle will run through completely,

before repeating. There are several different methods of optimizing a signal plan’s

cycle. First, the length of the cycle can be increased or decreased, allowing phases

to repeat more/less often. It is generally thought that shorter cycle lengths can be

much more effective with low traffic volumes, as the phases change more quickly to

allow sporadically arriving vehicles to proceed (Findler and Stapp, 1992). Higher

traffic volumes though, can benefit from increased cycle lengths, as more vehicles can

proceed through the intersection during a single phase. Also, a longer cycle length

decreases the percentage of time that all traffic flows must be stopped due to safety

requirements while switching phases. The order in which phases occur during a cycle

can also affect the utility of a signal plan. While the order matters much less at simple

intersections, it can become important in more complex control scenarios, where there

may be many different phases allowing traffic to travel in various directions (e.g.,

turning lanes with advanced green lights). Finally, with more complex intersections,

it may be beneficial to add/remove certain phases depending on the traffic state

(observed or predicted) at the current time. As an example, it may be beneficial to

have an advanced green light for a turning lane at one point during the day, while it

would hinder traffic flow at another point in the day.



9

2.3.3 Offsets

An offset value specifies at which point in the cycle the first phase will begin, allowing

different intersections to begin their cycles at differing times. Improving offset values

results in coordination between intersections, which can allow vehicles to proceed

through multiple intersections without having to stop. This phenomena is known in

traffic research as a ’green wave’ and can be an important factor in improving overall

network performance (for more on green waves, see Robertson and Bretherton, 1991).

2.3.4 Safety Requirements

Since conflicting traffic flows are present at intersections, there are several safety

requirements that must be realized by a traffic light plan. First, each signal plan

must ensure that conflicting traffic flows cannot proceed at the same time. Also,

there must be a specified amount of time where all traffic flows are stopped before

switching from one signal plan to another. This time period allows vehicles that may

have just entered the intersection to exit before conflicting traffic flows move into the

intersection.

Further to these vehicular safety constraints, many jurisdictions implement proto-

cols which ensure the safety of pedestrians as well. As previously mentioned, however,

the consideration of pedestrians falls outside of the scope of this thesis.

2.4 Traffic Light Optimization Architecture

Papageorgiou et al. (2003) outlined a dichotomy of traffic light optimization tech-

niques: fixed-time strategies and traffic responsive strategies. Each of these strate-

gies can be further subdivided into those that are isolated (controlling only a single

intersection with no consideration of other intersections) or coordinated (considering

more than one intersection). The details of the two broad approaches are explained

further in the following two sub-sections.



10

2.4.1 Fixed-time strategies

Fixed time strategies rely on off-line optimization algorithms, which attempt to select

parameters such that an overall goal is reached (e.g., minimizing travel time, maximiz-

ing network capacity). These optimizations are performed using historically observed

traffic data, as opposed to real-time observations of traffic state. This, of course, can

result in poor overall performance within the traffic network for three reasons. First,

there is no guarantee that traffic volumes on a given day will match those that were

used to optimize the intersections’ signal plans. The larger the difference between

current traffic state and historical traffic state, the less effective the signal plans will

be. Also, as the historical data ages, it becomes more likely that the underlying traffic

volumes will change. This can become especially crucial in an urban environment,

where new residential, commercial or industrial developments can result in an overall

traffic volume change for a given area. Once again, these fixed plans fail to recognize

these changes until new measurements are taken and new plans developed. Finally,

traffic volumes can change at anytime due to disturbances caused by traffic accidents,

construction or other incidents. Fixed controllers fail to realize and adapt to these

disturbances, resulting in inefficient signal control.

The fact that isolated fixed-time strategies do not take into account other intersec-

tions can result in further problems. For example, one intersection may be optimized

in such a way that it allows vehicles to constantly flow in one direction. An inter-

section downstream from this area, however, will not be anticipating the increase in

traffic volume because it considers only historical observations when deciding on its

own signal plan. The downstream intersection then, will not be prepared for this

new situation and will operate inefficiently. If the efficiency of the downstream inter-

section’s plan becomes poor enough, major problems can occur as traffic jams form

and propagate throughout the network. Coordinated fixed-time strategies address

this problem, by analyzing the overall performance of the signal plans at all inter-

sections within the network. While the computational requirements for this analysis

can be extremely high, the off-line optimization allows for the time necessary to find

a solution.



11

2.4.2 Traffic Responsive Strategies

Traffic responsive strategies aim to optimize signal plans using real-time traffic state

observations. This real-time measurement of traffic is generally achieved through the

use of sensors placed within the road network, which are capable of detecting vehicles

as they pass. The problem of signal inefficiencies due to measurement ageing is

eliminated when using real-time observations to determine signal plans. Another issue

arises though, as traffic responsive strategies must generate signal plans in real-time

and therefore cannot perform as much analysis as the off-line optimization methods

used with fixed-time strategies. For this reason, many classic optimization algorithms

cannot be used for large traffic networks.

Traffic responsive strategies typically implement an architecture such as that

shown in Figure 2.2. First, an observation period occurs, in which sensors within

the network generate information about the current traffic state. This information

is then passed to the optimization algorithm, which performs the steps necessary to

generate new signal plans for the network being considered. The traffic lights then im-

plement these new plans until another observation period is completed and the plans

change once again. Essentially, traffic responsive signal controllers create a model of

traffic flows in real-time and optimize the allocation of resources (green time) based on

the predicted traffic volumes. Using this strategy, the signal plans adapt throughout

the day to meet the current traffic state, as opposed to a historically observed traffic

state. As with isolated fixed-time control strategies, isolated traffic responsive control

at an intersection can cause problems at other intersections within the network. This

can happen when one intersection implements a plan which results in a traffic volume

far from what another intersection has anticipated. This problem, however, is not

as costly when using a traffic responsive strategy because the failing intersection will

modify its plan much sooner than a fixed-time control strategy. Still, the level of

coordination between intersections, as well as the speed at which intersections can

adapt to unexpected traffic volumes, can greatly affect the overall performance of the

network.



12

Tra�c Responsive

Intelligent Controller

Tra�c Sensors

Tra�c Signal

Control Devices

Tra�c Infrastructure

Tra�c State Observations

New Signal Plans

Figure 2.2: A simple responsive traffic system architecture

2.5 Computational Approaches to Traffic Light Optimization

This section includes background information regarding a number of the approaches

which have been used in the traffic light optimization domain. This approaches

include multi-agent systems (Section 2.5.1), evolutionary computing (Section 2.5.2),

fuzzy logic (Section 2.5.3) and swarm intelligence (Section 2.5.4).

2.5.1 Multi-agent Systems

A multi-agent system consists of an arbitrary number of intelligent agents acting/

interacting within a common environment. Wooldridge (2002) also outlined the fol-

lowing three characteristics which the agents within a multi-agent system must pos-

sess:

• Autonomy: The agents must be able to act on their own accord, making in-

formed decisions based on the information available to them.

• Decentralized: There is no centralized controlling agent that makes decisions

for all other agents.

• Local views: No agent has a global view of the system. Actions must be made



13

based on information available locally, although locally available information

may have been communicated to the agent from further away.

Multi-agent systems are particularly well suited to solving problems which cannot

easily (or possibly) be solved by a single agent. Some areas where multi-agent systems

have been applied include financial systems (Decker et al., 1997), disaster response

(Schurr et al., 2005), social network analysis (Sabater and Sierra, 2002) and traffic

control (Balaji and Srinivasan, 2010).

2.5.2 Evolutionary Computing

Evolutionary Computing is a research area within Computer Science, which aims to

develop solutions for problems by exploiting the power of natural evolution (Eiben

and Smith, 2003). The natural ability of evolution in problem solving can be easily

seen by looking at the many diverse and successful species on Earth. Two of the most

common evolutionary computation approaches include genetic algorithms (Mitchell,

1998) and genetic programming (Koza, 1992). Typically, evolutionary approaches

repeat a process similar to the three steps below until a specified ending condition is

met:

1. Create a population of individual solutions: This can be generated at random

initially, but uses selected individuals from previous generations, modified by

genetic operators (mutation, crossover), in later iterations.

2. Evaluate the fitness of the individual solutions: This process allows each indi-

vidual to be assigned a fitness value which generally represents the effectiveness

of that individual’s solution.

3. Select individual solutions based on fitness: As with natural evolution, some

individuals will be more likely to pass genetic material to the next generation.

Using the fitness values of the individuals, a number are selected and used to

create the next generation.

These evolutionary approaches usually involve centralized computing, with a large

level of computing power being required to simulate traffic for each individual within



14

the population for a number of generations. The computing power required also

continually increases as the size of the network under consideration increases. For

this reason, it seems infeasible to use an evolutionary approach to evolve control of

large traffic networks in real time.

2.5.3 Fuzzy Logic

The idea of fuzzy logic was first proposed by Zadeh (1996). When using fuzzy logic,

truth values of variables can take on a continuous value in the range of ]0, 1[ as

opposed to the traditional binary truth values of 0 or 1. Another difference between

fuzzy and binary logic is that fuzzy logic tends to use linguistic variables, as compared

to the numerical variables of binary logic. This use of linguistic variables, combined

with the idea of degrees of truth, is useful in domains with variables that are not

easily attributed to one group or another. For example, is the traffic volume in a

traffic network currently low or high? Fuzzy logic allows truth values such as 0.7

low and 0.3 high (for a medium-low volume), or 0.95 high and 0.05 low (for a very

high volume). An example of how these values are distributed is shown in Figure

2.3, which contains an example fuzzy membership function. Also, as opposed to

other intelligent methods such as neural networks (the power of which is most often

stored in the connection weights), the use of linguistic variables allows fuzzy logic

algorithms to work in terms that humans can easily understand. Decisions in fuzzy

logic are usually made using a rulebase which can be developed by expert knowledge,

trial-and-error or an automatic method such as a genetic algorithm. Rules within

the rulebase typically take the form of if VARIABLE1 is VALUE1 then OUTPUT, or

as a more concrete example: if traffic volume is high then cycle length is

high. While the use of a rulebase carries the previously mentioned advantages, the

performance of the controller greatly relies on the effectiveness of the rules developed

and it can be difficult to determine if the rules being used are helpful.

2.5.4 Swarm Intelligence

Swarm intelligence deals with the emergent collective intelligence of a group of simple

agents (Bonabeau et al., 1999). There are a number of important swarm intelligence



15

0

1

0 2000Tra�c Volume (vehicles/hour)

None Very HighHighMediumLow

M
e

m
b

e
rs

h
ip

 V
a

lu
e

Figure 2.3: An example fuzzy membership function

ideas which may be applied in the traffic domain. The first involves finding routes

within networks using pheromones, as is done by ants when searching for food. In this

case, pheromone levels are increased on shorter, more desirable paths, making those

paths more likely to be traversed. Eventually, this type of system converges to a path

which is hopefully optimal (although locally optimum path discovery is possible, as

with many optimization techniques).

Another common swarm intelligence technique is that of task allocation (Ther-

aulaz et al., 1998), which aims to assign different jobs to agents to accomplish some

goal. In the domain of traffic signal control, each phase within the signal plan can

correspond to a job which must be selected by the controlling agents. Each agent

within the system has a specific propensity for each possible job (referred to as the

response threshold of the agent for the job), as well as an amount of motivation for

each job. This motivation, once again, is provided by virtual pheromones which in-

dicate traffic volume levels. Considering both the motivation for a job to be selected,

as well as the specific agent’s propensity for each job, a single job can be selected

at any time by each agent. The propensity of the agent to select the chosen job is

then modified after a period of time based on the effect the job selection had on the

system (i.e. increasing the likelihood of choosing jobs which had a positive effect on



16

the system). Details on the application of this technique to traffic signal control is

included in Section 3.6.

A third swarm intelligence technique which has been used for traffic light optimiza-

tion (and many other search problems) is particle swarm optimization. In particle

swarm optimization, a group of particles, each of which represents a possible solution,

is moved through a search space. The movement of each particle is based around a

position and velocity which are modified throughout execution in an attempt to find

the optimal solution. In this case, signal plans of the network are encoded into vectors,

with the fitness of these vectors being evaluated through simulation. The velocity of

all particles within the system is affected by the best solution found so far, drawing

more particles near to this solution in hopes that an optimum lies nearby.

2.6 Traffic Simulation

Traffic simulation is the modelling of vehicle traffic systems for the purpose of in-

vestigating/planning transportation systems. These simulations offer a safe and con-

venient environment to investigate possible modifications to transportation systems.

Traffic simulation as a whole can be largely divided into two broad approaches (mi-

croscopic and macroscopic), with another approach (mesoscopic) being a hybrid of

the two. All three approaches are explained in more detail below, with a focus on

microscopic simulation and the various components involved in creating a microscopic

simulation.

2.6.1 Microscopic Simulation

Microscopic traffic simulation relies on individual driver behaviour. Each vehicle

within the simulation environment is updated discretely using a specified driver

model. Driver decisions, then, are based on both properties of the traffic network

(i.e., speed limit, lanes) and nearby vehicles. Using a driver model for decision

making allows for a heterogeneous distribution of vehicle behaviour, with vehicles

acting differently based on their driver model parameters. A summary of the impor-

tant modules within a microscopic traffic simulation environment are provided below,

while Table 2.1 provides a summary of various available microscopic simulators.



17

AIMSUM CORSIM FOSIM MITSIM PARAMICS SimTraffic SMARTAHS FREESIM SUMO MATSIM

Free No No No Yes No No Yes Yes Yes Yes

Open Source No No No Yes No No Yes Yes Yes Yes

OS
Windows Windows Windows Linux Windows Windows Linux Linux Linux Linux
Linux Windows Windows Windows
OS X OS X OS X OS X

Documentation/Support
Yes Yes Yes Limited Purchasable Yes Very Limited Very Limited Documentation Yes

Active Community

Languages/Tools

N/A N/A N/A C N/A N/A C Java C++ Java
PVM mySQL Python

Perl
Apache

Network Gen.
GUI GUI GUI TextFiles GUI GUI Text Files Text Files XML OSM Import

GUI OSM Import

Route Gen.
OD GUI GUI GUI OD Text File OD GUI GUI OD Text File Text Files XML Text Files

Turning Ratios Generators

Sim GUI 3D Yes Yes Yes 3D 3D Graphs Yes Yes Yes

Output
Graphs XML Graphs Text XML Graphs Graphs N/A XML Text

CSV CSV
HTML

Network Types Any Any Freeways Any Any Any Freeways Freeways Any Any

Table 2.1: Summary of attributes for various microscopic traffic simulators

Network Creation

Network creation is the process of designing a road network for use within a simu-

lation environment. This generally includes specifying properties of road segments

(e.g., number of lanes, speed limit, start/end location) and the connections between

lanes at intersections. While some environments require these specifications to be

maintained in text files, which can be extremely time consuming, others can directly

import traffic networks from other sources such as OpenStreetMap (OpenStreetMap,

2011) or geographic information systems (GIS). This automatic importation of traffic

networks, along with other beneficial simulator attributes, is included in Section 5.2,

which discusses the reasons for choosing the traffic simulator used within this thesis.

Route Generation

Route generation involves specifying routes for each vehicle that will be included in

a simulation. The requirements of the route generation phase vary widely between

simulators, as each one accepts different levels of information and expects routes in

different formats. Generally, the route of each vehicle is specified either explicitly

with a set of road segments that must be traversed, or through an origin/destination

pair, where the route is generated dynamically when the vehicle enters the simulation.

Using either of these methods, it would be unrealistic to generate a set of routes for a

meaningful simulation by hand. For this reason, most simulation environments pro-

vide tools which automatically generate vehicle routes based on specified parameters.



18

Two common methods of generating routes are explained below.

Origin/Destination (OD)

Using an origin/destination approach typically involves specifying a number

of subnetworks/areas, along with a number/percentage of vehicles which will

begin their trip in one area (the row) and end in another area (the column).

These numbers can be used to generate trips probabilistically throughout a time

period, with routes between the two points being computed using a routing

algorithm (often shortest path). An example OD matrix is shown in Table 2.2.

Turning Ratios

When defining routes using turning ratios, probabilities for each option at a

turning point in the network must be specified (or calculated from vehicle

counts). These probabilities must total 1 for each turning point, as each vehi-

cle must take one of the possible directions. Vehicle introduction rates, which

determine how many vehicles enter the simulation and where they originate

from, along with ’sink edges’, must also be specified for the network. When

a vehicle’s route reaches a ’sink edge’, the route is completed and the vehicle

is removed from the simulation. The route creation program then determines

vehicle’s routes probabilistically (based on the turning ratios) from the origin

of the vehicle until it reaches a sink edge. Table 2.3 presents an example table

used for turning ratio generation. This table includes, for each interval, the

number of vehicles which exited left (LT), right (RT) or straight (ST) for each

incoming street. The total vehicles exiting each incoming street is also provided

(SUB).

Output

The output abilities of a simulation environment play a large role in determining that

environment’s utility. This is because it would be impossible to make any conclusions

without the ability to measure relevant indicators. The most basic information (which

is included in almost every simulator) generated from a microscopic simulation is

valuable information about the vehicles within the network, such as speed and trip



19

Area 1 Area 2 Area 3 Area 4 Area 5

Area 1 0 15 3 9 9

Area 2 18 0 27 5 8

Area 3 1 21 0 6 10

Area 4 9 7 7 0 13

Area 5 7 6 11 15 0

Table 2.2: An example origin-destination matrix for 5 areas within a network

Time Interval Eastbound Westbound

Start End LT ST RT SUB LT ST RT SUB Total

7:00 8:00 83 81 0 164 0 39 67 106 270

8:00 9:00 112 106 0 218 0 73 52 125 343

9:00 10:00 91 67 0 158 0 61 66 127 285

11:30 12:30 52 56 0 108 0 54 74 128 236

12:30 13:30 99 25 0 124 0 75 63 138 262

15:00 16:00 57 39 0 96 0 53 79 132 228

16:00 17:00 93 53 0 146 0 46 50 96 242

17:00 18:00 83 31 0 114 0 76 60 136 250

8 Hour Total 670 458 0 1128 0 477 511 988 2116

Table 2.3: An example table used for turning ratio calculation and route generation



20

times. Some simulators also provide aggregated information about road segments

within the network (or the network as a whole), often including measurements such

as average vehicle speed, vehicle density and total number of vehicles. More advanced

simulators can generate calculated measurements involving noise and emission levels,

which of course, are of high value to those interested in designing systems which

minimize pollution of various kinds. This type of information is not considered in

this thesis, however, as the work is only concerned with increasing average vehicle

speed within the network.

Along with the ability to produce these observation outputs, the immediate us-

ability of this information may be of some importance to many people. For example,

many of the simulation environments available write these observations directly to

text files. This data then requires some level of treatment to generate usable data

such as graphs. Some of the more advanced simulators, however, allow for a large

number of graphs to be generated automatically from the output.

Car Following Models

Car following models are a common form of driver behaviour model applied within

microscopic traffic simulators. Car following models attempt to replicate the actions

of real-world drivers by making behavioural decisions based on nearby vehicles. The

use of a car following model for driver behaviour within a traffic simulator allows for

the observation of interactions between vehicles within the network. Parameterized

car following models also allow for heterogeneous driver behaviour, with behaviour

differing based on the various parameters used (e.g., comfortable following position,

acceleration).

2.6.2 Macroscopic Simulation

Instead of modelling individual vehicle behaviour, macroscopic traffic simulators rely

on traffic flows, densities, and speed to model transportation systems. This approach

draws comparisons to fluid flows and was actually compared to the movement of

a river in the original work by Lighthill and Whitham (1955). The entire network

within a macroscopic simulator is divided into many small sections, with the state of



21

each of these sections being modelled based on the key parameters (flow, density and

speed).

2.6.3 Mesoscopic Simulation

Mesoscopic traffic simulators combine elements of both macroscopic and microscopic

traffic simulation. Mesoscopic simulators typically model individual vehicles (a micro-

scopic approach), however, the actions of these vehicles are based on overall averages

(a macroscopic approach).

2.7 Summary

This chapter provided a brief introduction to a number of the central concepts of this

thesis. Section 2.2 introduced the general problem of traffic optimization, identifying

the optimization of traffic flows (as opposed to the expansion of traffic infrastructure)

as a key goal. Section 2.2 discussed traffic light optimization, including a description

of the main traffic light parameters addresses by optimization algorithms (Sections

2.3.1-2.3.3). Sections 2.4 and 2.5 present common architectures used in traffic light

optimization and a number of computational approaches which have been applied

within previous traffic research. Traffic light optimization is addressed further in

Chapter 3, which details previous optimization research from the traffic domain, as

well as Chapters 4 and 6 which introduce a distributed/adaptive traffic light optimiza-

tion approach. Section 2.6 introduces traffic simulation, with a focus on microscopic

simulation (Section 2.6.1) which is used within this thesis. This included discussion

of the main steps involved when creating scenarios for use within a microscopic traffic

simulator. Within Section 2.6.1, Table 2.1 presents a summary of the key attributes

of a number of available microscopic traffic simulators. Chapter 5 of this thesis deals

with the creation of a realistic traffic model and will further detail the steps taken in

developing scenarios for microscopic traffic simulation.



Chapter 3

Related Work

3.1 Introduction

A number of different intelligent computing techniques have been applied in the do-

main of traffic control. Some of these (see Sections 3.2 and 3.8) rely on powerful

computing systems or large amounts of pre-calculated data. Others (Sections 3.5)

develop control systems which operate using simple, locally-aware agents. While

most of these works rely on technology that is currently available, others (see Section

3.3) plan for future technological advances by including theoretical requirements such

as automated vehicle control. This chapter outlines the state of the art in intelligent

traffic control systems, detailing the various different approaches that have been used.

Each section outlines work completed using a specific approach, with discussion of

important factors such as adaptability, scalability and ability for real-time control.

For easy reference, a table summarizing the overall advantages/disadvantages of each

approach is presented at the end of each section. Section 3.11 concludes the chapter

by identifying, from analysis of the works presented, a number of requirements for

the algorithms developed in the remainder of the thesis.

3.2 Evolutionary Computation

Montana and Czerwinski (1996) presented one of the first works using an evolutionary

approach for intelligent traffic signal control. Two strategies were developed and com-

pared in this work: a strongly-typed genetic programming (Montana, 1995) approach

to generating a traffic controller and a genetic algorithm (Holland, 1975) approach to

optimizing fixed time signal plans. A description of each approach is provided below:

Genetic Programming A genetic programming parse tree is evaluated at every

second, with the Boolean value of this tree resulting in either phase change

22



23

(true) or no change (false). The parse tree uses typical Boolean functions (AND,

OR, NOT, >) as well as a number of terminals such as number of vehicles

approaching a light, whether vehicles are backed up to a sensor downstream

and how long the current light has been in operation.

Genetic Algorithm Each individual consists of three real-value entries for each

intersection in the network, with the first 2 numbers representing the lengths

of each phase and the third number representing the signal offset value.

For both approaches, the fitness function was based on total delay within a simula-

tion, with lower delay resulting in higher fitness. The performance of both the genetic

programming and genetic algorithm strategy were compared for three different small

networks with constant traffic flow rates. The performance of the genetic program-

ming approach was better than that of the genetic algorithm for all three cases that

were investigated. The individuals which performed best in the training scenarios

for both approaches were also compared with different random number seeds to in-

vestigate the generalizability of the solutions. Once again, the genetic programming

individuals performed the best, with results closely comparable to those found in

training. The genetic algorithm had much wider variability, showing that the fixed

signal time approach did not generalize as well.

Vogel et al. (2000) applied a different evolutionary approach, that of evolution

strategy (Beyer and Schwefel, 2002), to evolve both phase order and phase length for

a single intersection. Using this approach, a set of chromosomes is used to encode

the various parameters necessary to define the traffic signal plan. The chromosomes

used are explained below:

Phase Chromosomes This set of chromosomes encodes which flow directions be-

long to each phase. The number of chromosomes used depends on the number

of phases, which can range from 2 to the number of flow directions.

Phase Order Chromosome This chromosome encodes the order in which the phases

of the signal plan occur.

Green Time Chromosome This chromosome contains the amount of green time

that should be allocated for each phase in operation.



24

Traffic Information Chromosomes This set of chromosomes was used to encode

things such as parameters for traffic detectors (e.g., sampling rate).

The specific evolution strategy (ES) used in this work was the (1+1) ES, which is

synonymous with a hill-climbing approach. In each generation, the initial individual

(the population is of size 1) will be mutated slightly to form a second individual. Of

these two individuals, the one with the highest fitness value continues to the next

generation. The ability of this approach to find effective parameter sets was investi-

gated on a single intersection network with 4 incoming edges. Through simulation,

it was shown that the proposed strategy was capable of improving the parameter set

over time. In fact, it was even shown that a random initialization of parameters could

be evolved just as well (and even better) as a parameter set initialized with heuristi-

cally determined parameters. The approach was not compared to any other control

mechanisms though, so the overall effectiveness of this strategy is still questionable.

A genetic algorithm (GA) was used once again by Sánchez et al. (2004) to optimize

the signal timing of a set of intersections. In this work, each individual encodes the

length of each phase within the cycle for each intersection. An example of what each

chromosome may look like is shown in Figure 3.1. Within the figure, it can be seen

that the chromosome has an integer value for each phase within each intersection.

Although the figure has 5 phases for each intersection, this number can vary based on

the control logic required for each intersection. A traffic scenario is simulated for each

individual and the population evolves in an attempt to minimize overall travel times.

Using a small traffic network, the GA approach was compared to results found using a

random search technique, a fixed control scheme in which every traffic light maintains

the same green period as the others and a scheme in which the traffic lights switch

to allow the flow with most cars present to proceed. The GA approach presented

performed well in comparison to the random control (83.82% decrease in travel time)

and the fixed control scheme (56.74% decrease in travel time). It failed, however, in

generating plans which performed better than the third approach which maintained

travel times of approximately 60% of the times found using the GA. This work was

expanded further by Sánchez et al. (2008), with the GA optimization being applied

to a real world traffic network and compared to signal plans supplied by the traffic



25

{ { { { {

Intersection #1 Intersection #2 . . . . . Intersection #N-1 Intersection #N

9   11  4  17  4   9   7   8  21 31 14 11  9   6   7  14  9   9   14  8  11  7   8   7  12

{Phases

1     2     3    4     5

{Phases

1     2     3    4     5

{Phases

1     2     3    4     5

{Phases

1     2     3    4     5

{Phases

1     2     3    4     5

Figure 3.1: Example of a chromosome encoding phase lengths for a traffic network

authority of that area. The modelled network consisted of 20 intersections located in

the city of Santa Cruz de Tenerife and the traffic flows were probabilistically created

using an origin-destination matrix inferred from the information available from the

traffic department. After evolving a population of 200 individuals for 250 generations,

average improvements ranged from approximately 7% to over 20% when compared

to 9 signal plans supplied by the traffic department. This same GA optimization

approach was further investigated by Sánchez et al. (2010), this time modelling the

’La Almozara’ area in Saragossa, Spain (it should be noted that the traffic volumes

used within these evaluations did not fluctuate over time). While analyzing the

performance of the system, the authors noted that the traffic volumes within the

modelled area were simply too low, resulting in little opportunity for optimization

and thus unconvincing and inconclusive results. While this approach improved over

other plans, which is certainly promising, it has still been evaluated using rather small

networks. As the networks increase in size (as they would when controlling an entire

city network), the search space involved in finding effective signal plans will increase

significantly. This may decrease the utility of this approach if there is no further work

completed to divide the problem into manageable sub-problems.

3.3 Reservation Based Systems

Dresner and Stone (2004) moved away from a traditional view of traffic light op-

eration, proposing an architecture in which intersections reserve time and space for

vehicles to cross the junction. Using this approach, the space inside an intersection

is divided into an NxN grid of ’reservation tiles’, each of which may contain at most

one vehicle at any time (to prevent collisions). Driver agents then communicate with



26

Table 3.1: Advantages and disadvantages of using an evolutionary computing ap-
proach for intelligent traffic signal control

Advantages Disadvantages
Can easily solve simple networks.
Can deal with static traffic volumes
easily.
Have been shown to work with real
networks.

Large amount of computing power re-
quired.
Centralized computing power required
increases as problem size increases.
Large problems may be difficult to
solve in real-time.

the intersection to reserve the space they will need to cross the intersection, passing

several important pieces of information such as vehicle attributes, arrival velocity and

arrival time. Using this information, the intersection agent will check to ensure that

the space required for the requesting driver agent is available at the time requested

before approving the reservation. If any of the necessary space is already reserved

at the required time, the reservation will be rejected. In the case of a reservation

rejection, the driver agent must attempt to make a new reservation until one is suc-

cessfully granted. This method of intersection control can perform extraordinarily

well because it eliminates the lost time from phase switching found in typical inter-

section control and can also allow vehicles to cross the intersection at their arrival

velocity without having to stop. This approach, however, also relies on advanced and

highly reliable communication networks, as well as sophisticated automated vehicle

control. Reliance on these modules, however, can cause safety concerns, as will be

discussed below. In this initial work, the reservation system was evaluated on a very

small network, consisting of a single intersection with East/West and North/South

traffic flow and a number of lanes ranging from 1 to 6. In each case, the system

resulted in an average delay of nearly 0 with the best case being found using 1 lane

per road (0.016 step average delay) and the worst being found with 5 lanes per road

(0.031 step average delay). There are, however, several key requirements that make

this approach infeasible. First, vehicles must be in very specific places at specific

times to avoid any collisions. While this may be possible, it requires a very precise

and automated vehicle controller. Furthermore, it this type of control were possible,



27

it would be extremely difficult when considering all of the factors found in the real

environment, such as differing road conditions. Also, traffic dynamics may result in

missed reservations. For example, a vehicle may have an earlier reservation than that

of the vehicle it is following, meaning it will undoubtedly miss its own reservation.

A key improvement to the original work is presented by the same authors in Dres-

ner and Stone (2005). The original intersection reservation agent assigned reservations

to vehicles based on a constant velocity. The reservation agents in the improved sys-

tem, however, consider the possibility of vehicle acceleration within the intersection

boundaries, which allows for a larger chance that a driver agent’s reservation request

will be approved. While including possible acceleration within the model allows for

an increase in reservation approval, it also adds yet another variable which must be

precisely controlled to avoid infringing on other vehicle’s space within the intersec-

tion. This precise control of vehicle’s can become even more difficult if sensor noise

is included (it was not included within this work, however). This work also formal-

izes the communication protocol used within the system, something which was not

specified in the original work.

Dresner (2006) and Dresner and Stone (2006) propose several further improve-

ments to the prior work. First, it is suggested that the reservation agent be modified

such that it can delay a response to a vehicle’s reservation request. Previously, with

immediate responses, a single vehicle may have a reservation approved shortly before

two other vehicles request reservations that conflict with the first vehicle (though not

conflicting with each other), resulting in two rejected reservations and one accepted.

With the ability to delay the confirmation/rejection of a request, the reservation agent

instead could approve the two non-conflicting reservation requests, while only deny-

ing the single conflicting request. Also, within the improved system, different types

of vehicles can be assigned priorities (e.g., emergency vehicles are a high priority)

which determine which reservations are rejected/accepted. The third improvement

proposed is to treat the intersection as a market where vehicle agents place bids for

time/space, with the highest bidder receiving the reservation. While no implementa-

tion details or results are presented regarding market based control (Wellman, 1993),

this approach is discussed further in Section 3.4.



28

A much more detailed version of these works, as well as new simulation results,

is presented in Dresner and Stone (2008). One of the main contributions of this new

work is the consideration of human drivers. The authors acknowledge that the system

would need to be implemented in stages and that it may never be fully adopted.

For this reason, they consider changes that must be made to accommodate human

drivers, such as ensuring that lights are green/red according to the current use of

the intersection. While using a reservation-based system for intersection control has

seemed very promising so far, the results from the experiments including human driver

within the system show a dramatic decay in performance. With 1% of drivers being

human, the average delay of vehicles is much higher than with no human drivers.

In fact, around the median range of vehicle rates tested, 1% of drivers being human

caused average delay to increase nearly 500%. These results signify a reliance on

an extremely advanced intelligent driver model which is used to control all vehicles

within the network, which make this approach infeasible assuming the system is not

adopted by 100% of vehicles within the network (which is almost guaranteed, as noted

by the authors). At the highest vehicle volumes, the average delay was found to be

nearly 10 times as high; these numbers were even worse when considering higher

percentages of human drivers. This work also investigates another ability that an

intersection controlling agent must have in a real world scenario - accident detection.

It is found that if the controlling agent has no means of detecting incidents within

the intersection, then a large number of incidents will occur in the time following

the original incident, as vehicles who assume the intersection will be clear collide

with the stopped vehicles. After enabling the intersection to instantaneously detect

an incident and assuming that all vehicles can be made aware of this incident, the

number of resulting crashes in the 60 seconds after the initial crash was reduced from

approximately 90 to 1.77 (using 6 lane roads). It is interesting to note, that with

5% human drivers included in the simulation, the incident rate was further lowered

to 1.50 crashes over the 60 second interval as the human drivers do not assume the

intersection will be clear of other vehicles. It is also shown that a delay in detecting

the incident of only 5 seconds can increase the number of crashed vehicles during

the interval to over 3.5. Furthermore, this approach relies on information such as



29

Table 3.2: Advantages and disadvantages of using a reservation-based approach for
intelligent traffic signal control

Advantages Disadvantages
Control decisions made in real-time.
Distributed control allows easy scala-
bility.
Shown to be very effective, assuming
everything goes as planned.

The model itself is somewhat infeasi-
ble.
Requires agent-controlled vehicles and
an extremely reliable communication
network.
Reservations may be missed frequently
due to traffic dynamics.
Shown to be ineffective without ex-
tremely high adoption rate.
Has not been tested in realistic net-
work settings.

maximum acceleration/deceleration of vehicles to calculate space/time requirements

of vehicles. While this is easily done in a simulation environment, in the real world

these values can vary based on a large number of difficult to determine factors such as

weather conditions, tire conditions/choice and brake quality. Thus, it would seem that

while this reservation approach may be extremely effective at controlling traffic flows

in real time, there needs to be much more work done in the area of intelligent vehicle

control before a real-world implementation could be considered safe or effective.

3.4 Market-based Control

Market-based control (Wellman, 1993) is an approach which views a system as a

virtual marketplace, with economic agents interacting amongst each other. While

Dresner (2006) and Dresner and Stone (2006) proposed a market-based extension

to the reservation controlled intersection architecture, the first real work on market-

based intersection control was completed by Balan and Luke (2006). Intersection

control agents within this initial work make decisions based on the number of ’credits’

that the waiting drivers hold. Each driver agent begins with a fixed number of credits

and also receives credits while waiting at a red light. When a vehicle crosses through

the intersection, it must pay a fixed number of credits. The combination of this



30

credit gaining/losing system, coupled with the fact that intersection control agents

make decisions based on the number of credits each waiting vehicle possesses, has

several beneficial properties:

• The intersection will generally favour incoming edges with more vehicles, as

more vehicles results in larger credit totals.

• There is a level of fairness involved, as vehicles who have waited a long time

previously (gaining credits) will be more likely to travel through the intersection.

• Emergency and other special vehicles can be given priority by augmenting the

number of credits they have.

• It allows for a further extension in which drivers who are in a hurry can sacrifice

credits they have stored to get through the network faster.

Experiments were carried out on a small traffic network (4x4 grid) where the method

of assigning values to vehicles based on credits was compared to the following methods:

Counting Cars One point per vehicle in the queue.

In-Range Time One point per vehicle for each second that vehicle is within the

sensor range of the intersection.

Mean Waiting Time A vehicle’s points are equal to the average time spent waiting

at all intersections during the current trip (including the current intersection).

Previous Mean Waiting Time A vehicle’s points are equal to the average time

spent waiting at all intersections during the current trip (not including the

current intersection).

Initially, the main goal of the research was to develop a control scheme which was

fair, by decreasing the variance of delay experienced by vehicles. While this goal was

realized (the credit system resulted in lower variance than the other methods), the

proposed method was also capable of controlling intersections more efficiently than

the other methods. The credit system, however, was not compared to any other traffic

control methods, thus it is difficult to comment on the method’s overall effectiveness.



31

Vasirani and Ossowski (2009) combined both reservation and market-based control

within the traffic domain. Unlike the work by Balan and Luke (2006), the intersection

agents attempt to maximize profit by setting the cost of a reservation based on the

level of demand. It is assumed that there is communication enabled between inter-

sections and that all driver agents are aware of the current price of a reservation at

all intersections. This work also assumes that real currency is used to pay for inter-

section use (an idea many may find undesirable) and that a secure payment method

is available for the driver agents. The proposed system could, however, easily be

applied using a virtual currency as is done in Balan and Luke (2006). A driver agent

can request a reservation from an intersection and in the event it is approved, must

transfer part of the cost in advance to secure the reservation. The driver agent then

pays the remainder of the cost when it meets the reservation, or loses the initial fee if

it is late or cancels the reservation. If a vehicle happens to arrive at an intersection

without a reservation (either because it failed to make one, or was late), it must wait

for a free reservation. The intersection manager will provide priority to any paying

driver agents, but must grant a reservation to a driver who has been waiting a speci-

fied amount of time. Driver decision making, as far as routing is concerned, is based

on a weighted sum of travel time and cost. This allows each driver to find a balance

between how long it will take them to complete their trip and how much that trip will

cost. An emergent feature of this strategy is dynamic traffic volume balancing caused

by variable intersection costs. Figure 3.2 provides an example network with two avail-

able routes between points A and B. Intersections along the most direct route between

the two points have, due to high demand, been assigned a cost of $10 each (for a total

trip cost of $50). The slightly longer route, which has experienced less demand, has

a cost of $5 per intersection for a total cost of $35. Drivers will be motivated by

these price differences to select the slightly longer route, as the time lost begins to be

outweighed by the money gained. One aspect of these systems that remains unclear is

that of vehicle queueing. There is no discussion included regarding the obvious prob-

lem of a vehicle wishing to pay and proceed through the intersection being physically

behind a vehicle that does not wish to pay at the moment. The paying vehicle must

(in theory) travel through the intersection during its reservation, but may not be able



32

$10 $10 $10 $10 $10

$5 $5 $5 $5 $5$5 $5

A B

Figure 3.2: An example network with different reservation costs at different intersec-
tions

Table 3.3: Advantages and disadvantages of using a market-based approach for intel-
ligent traffic signal control

Advantages Disadvantages
Real-time and distributed decision
making.
Can create a fair control system.
Can allow signal decisions based on
driver desires (e.g., relaxed, hurrying).

Conflicting agent opinions (e.g., a hur-
rying driving behind a relaxed driver).
Requires secure and reliable communi-
cation for transferring currency (real
or fake).
Has not been tested using realistic sce-
narios.

to do so due to the vehicle preceding it. This situation also violates the properties

of a market, in which the highest bidder should travel through the intersection first.

To investigate the properties of this model, the authors used a mesoscopic simulation

of an area of Madrid, although the traffic volumes were theoretical. It was found

that varying the cost of reservations at the different intersections can help balance

traffic flow and decrease overall travel time. As previously mentioned, this balancing

of traffic volumes is realized because intersections which are not busy will decrease

the cost of a reservation, making it more likely a vehicle will travel that route to save

money.



33

3.5 Self-organizing Systems

Gershenson (2005) developed a simple, reactive self-organizing system which was

capable of controlling traffic signals within a network. The developed control system

was evaluated in the NetLogo (Wilensky, 1999) modelling environment using the

included Traffic Grid (Wilensky, 2003) model. The algorithm and model presented

by Gershenson inspired the initial work of this thesis, which will be presented in

Chapter 4. This simple model of a grid network allows the user to define the volume

of cars (the total number of vehicles in the network) and uses simple rules to control

the behaviour of the vehicles within the model (accelerating if they can, stopping if

they must). The initial method outlined in this work, named Sotl-Request, involved

a single agent maintaining a counter at each intersection. At every discrete timestep,

this counter is incremented by the number of cars approaching the red light of the

intersection. Once the counter reaches a specific threshold value (determined by trial-

and-error in this case, as were all system parameters), the light at the intersection

is switched. Using this method, the signals at the intersection are completely self-

controlled and manage to switch to allow incoming vehicles (or those waiting) to

pass through. The counter at each intersection increases as vehicles drive toward the

intersection, which allows this approach to automatically coordinate and offset lights

throughout the network. The main problem with the counter-based approach is that

a large number of vehicles in the network can result in rapid switching of the lights,

which leads to high levels of inefficiency. For this reason, the second approach outlined

(Sotl-Phase) added a minimum amount of time that must pass before switching lights

at an intersection. This allows the system to be controlled effectively, even at higher

volumes. While the Sotl-Phase control method was capable of controlling the signals

well, the third method (Sotl-Platoon) added further restrictions to the system in an

attempt to keep groups of vehicles travelling together. In Sotl-Platoon, when an

agent wishes to switch the lights at its intersection, it will not do so if there is an

approaching vehicle within a certain distance of the intersection (this rule is ignored

if there is a number of cars greater than another parameter value, as these vehicles

will still remain as a platoon). Cools et al. (2008) extended this work in three ways.

First, the authors implemented the algorithm in a more realistic traffic simulator



34

(MoreVTS, 2011), as the NetLogo Traffic Grid model provides only very basic traffic

simulation. Second, a 12 intersection stretch of main road with incoming side roads

was modelled to duplicate an area of Brussels. Finally, the algorithm proposed was

evaluated against the plans used by the traffic authority for the area. These results

show the proposed algorithm, on average, resulted in 50% less trip waiting time than

the plans currently being used to control the network.

A much more analytical approach to self-adaptive traffic control was taken by

Lämmer and Helbing (2008). Agents at each intersection in this approach use either

of two possible strategies (depending on the local traffic situation). The first, which

is used when traffic flow volumes are below saturation, determines optimal times to

switch the lights at an intersection. This is achieved by taking into account the arrival

and departure rates at the intersection, which allows waiting times to be predicted

for each flow in the event they are stopped. Using these waiting time estimates

and taking the time to switch lights into consideration, the decision to either switch

lights or leave the lights can be made at any point. If the length of an incoming

queue becomes longer than a specified value, the agent switches to a stabilization

strategy. While using the stabilization strategy, an intersection maintains a list of

incoming queues which are longer than should be allowed, changing the lights to clear

these queues one after another. Simulations were performed, on a single intersection

and an irregular 9x9 grid network, to compare the combined strategy approach to

a fixed cycle approach, as well as both the optimization and stabilization strategies

by themselves. The simulation results showed that the combined strategy was much

more successful at keeping small queue lengths. Also, it was shown that neither of

the two strategies worked effectively on their own.

3.6 Swarm Intelligence

An interesting area of artificial intelligence which authors have begun to apply to

traffic light control is swarm intelligence, which relies on the collective intelligence

of a group of simple agents (Bonabeau et al., 1999). de Oliveira et al. (2004) and

de Oliveira and Bazzan (2007) applied the swarm intelligence technique of task al-

location (Theraulaz et al., 1998) to the traffic control problem, with agents capable



35

Table 3.4: Advantages and disadvantages of using a self-organizing system for intel-
ligent traffic signal control

Advantages Disadvantages
Distributed.
Adaptive.
Typically rely on simple mechanisms.
Local communication allows for co-
operation and coordination between
agents.
Generally produce robust solutions.
Effectiveness has been demonstrated
on realistic traffic scenarios.

Generally require a communications
network (although it can be simple due
to local communication).
Relatively little work completed in the
area.

of selecting effective plans and coordinating with each other. Using this approach,

a single agent at each intersection is used to select from 2 possible signal plans (one

consisting of 40 seconds of green time in the N/S direction and 20 seconds in the

E/W direction, the other with 20 seconds N/S and 40 seconds E/W). Each agent has

a specific propensity (which varies over time) to implement each of the two plans.

As is common in many swarm intelligence approaches, agents are also motivated to

select a plan by pheromones (these pheromones act as an environmental stimulus

for real-world social insects). Vehicles which are waiting at a red light in the traffic

network release pheromones, which increases the motivation of the agent to select a

plan which favours that edge (more green time dedicated to the edge’s flow). As in

the real-world, pheromone levels also dissipate over time which decreases the moti-

vation if vehicles are no longer present. Unlike the real-world, however, a simulation

environment provides an easy way of representing pheromones (using state variables

within a computer program). Within this work, there is no discussion on how these

pheromones may be represented in a real-world system and thus the feasibility of such

a system is questionable. The overall motivation of an agent within this system to

chose a signal plan is based on three criteria:

1. The concentration of pheromone on incoming lanes



36

2. The amount of green time allocated to each of the incoming lanes by the signal

plan

3. The plans that neighbouring intersections are implementing

Coordination between agents is achieved through the consideration of neighbours

plans (which are available through the use of local communication) when calculating

motivation to select a plan. The motivation for a plan is increased by the percentage

of neighbours also implementing that plan, which makes an agent more likely to select

a plan that its neighbours are also using (the level of this effect is controlled by a

system parameter). The actual method of plan selection is based on typical task

allocation algorithms and takes into account both level of motivation for each plan

as well as the response threshold of the particular agent to each plan. After a plan

is implemented for a period of time, the agent’s response threshold for that plan is

either decreased (more likely to be selected) or increased (less likely to be selected)

based on the performance of that plan over the time period. Using this method,

it is hoped that agents will lower their response threshold for effective signal plans,

making it more likely those plans will be implemented in the future. This approach

was evaluated on a small, 5x5 grid network, with incoming volumes being either 20

per minute in the N/S direction and 10 per minute in the E/W direction, or vice

versa. These insertion rates were held for periods between 60-180 simulation minutes

before switching to the opposite volume description. The results demonstrated that

the agents did indeed cooperate, with groups of agents implementing the same plan

based on the traffic volume. While the ability of agents to cooperate is shown, the

actual ability of this system to effectively control traffic is not shown, as there is no

comparison to other control approaches included.

A second approach using particle swarm optimization (Kennedy and Eberhart,

1995) is presented by Garćıa-Nieto et al. (2011). To investigate the ability of particle

swarm optimization to find effective traffic signal plans, real-world sections of both

Sevilla and Malaga, Spain were constructed in the SUMO (SUMO Traffic Simulator,

2011) traffic simulator using data available from OpenStreetMap (OpenStreetMap,



37

Table 3.5: Advantages and disadvantages of using swarm intelligence for intelligent
traffic signal control

Advantages Disadvantages
Distributed.
Adaptive.
Rely only on local information.

No real-world pheromone implementa-
tion.
Used only on simple problems
so far (no realistic traffic scenar-
ios/networks).
Certain swarm approaches can be slow
to adapt due to the learning nature.

2011). The plans developed by the particle swarm optimization approach were com-

pared to those found using random search, as well as plans developed using a de-

terministic algorithm included in the SUMO traffic simulator. It is found that the

proposed approach achieved the best (lowest score) fitness on both of the test net-

works, with a fitness value less than half of the others for the Malaga network and

less than 65% of the others for the Sevilla road network. While this approach has per-

formed well in these simulations, an optimization-based approach such as this may be

hindered by real-world traffic dynamics and/or the time limits imposed in a real-time

control scenario.

3.7 Fuzzy Logic

The first application of fuzzy logic in the traffic signal control domain was proposed

by Pappis and Mamdani (1977). This approach consisted of 3 input variables: time

(e.g., very short, medium), recent arrivals at the green phase (e.g., few, many) and

queue length at the red phase (e.g., none, small, larger). The rulebase, which was

developed by trial-and-error in this case, produces a single output from these inputs:

the extension time for the current phase. As is seen with the decision support systems

described in Section 3.8, this rulebase remains static and does not adapt along with

changing traffic parameters, which can lead to degraded performance over time as the

system does not generate a predictive model of traffic. After running for a specific

amount of time, the fuzzy logic controller takes the input values and checks the



38

rulebase to see how long the current phase should be extended. This process is

repeated until it is decided that no extension should be given. The fuzzy controller

approach presented was compared to a vehicle-actuated controller on a simple single

intersection network for various fixed traffic volumes. Using the fuzzy logic controller

resulted in a 10-21% decrease in overall delay. Chou and Teng (2002) also proposed

an extension-based fuzzy controller, using only the queue lengths of the 4 incoming

edges as input variables. The controller was shown, through simulation, to perform

much better than a fixed-timed approach to signal control.

As opposed to using the extension principle, Chiu and Chand (1993a) and Chiu

and Chand (1993b) designed a controller which adjusts phase split, offset and cycle

time (using a different rulebase for each of these calculations) based on the saturation

levels of the network’s edges. After each cycle, an adjustment is made to both the

phase splits and cycle length based on the saturation levels of the E/W traffic flow

and the N/S traffic flow. This is done by calculating a fraction of the current cycle

time for each flow based on the inputs. The rulebase for modifying offset values relies

on the volume difference between nodes, as well as the estimated change required

to produce a ’green wave’ on the edge with the highest saturation. The effects of

this controller were investigated in a simulation on a 3x3 grid network with vehicle

insertion rates varying for each incoming edge. Initially, the signals in the network

would be controlled using a fixed signal plan with equal time in each direction. After

30 simulated minutes, 3 intersections would be selected for adaptation, resulting in

approximately 66% as much delay as the fixed plan. After another 30 simulated

minutes, all intersections would be allowed to use the fuzzy controller, resulting in

around half the delay of the fixed plan.

Hoyer and Jumar (1994) developed a more complex fuzzy controller which can

deal with a varying number of phases. The fuzzy controller also included phase

selection as an output, allowing dynamic phase ordering based on real-time traffic

data. Inputs used in the fuzzy controller included current traffic volumes on the

incoming lanes, as well as the elapsed time since the last phase change. The controller

was compared to four other controllers (including a fixed time controller, two vehicle

actuated approaches, as well as a simple fuzzy logic controller with 2 phases and



39

a fixed cycle time) on a 3 intersection network with different traffic volumes and

turning rates. With low volume of vehicles, all but the fixed controller maintained a

similar level of travel time. At higher volumes though, the proposed approach seems

to adapt better than the simple fuzzy controller and the vehicle actuated approaches.

Similar to this, Lee and Lee-Kwang (1999) created a controller which optimized phase

length and order, but also considered the state at neighbouring junctions. This was

accomplished by adding input variables to describe the state of congestion at the

neighbouring junctions, as well as the congestion between the intersection and its

neighbours. Lee and Lee-Kwang (1999) compared the developed controller to a vehicle

actuated controller on 3 grid-like (with minor mutations) networks, with both fixed

and steadily increasing traffic levels. Improvements of 3.5-8.4% were found with fixed

traffic volumes, while 4.3-13.5% was found with the increasing flows.

Similar to several of the previous approaches outlined, the FUSICO project (Ni-

ittymaki and Pursula, 2000) developed a fuzzy controller that included both a fuzzy

extender for determining the time to switch phases, as well as a fuzzy selector for

selecting phases. The controller was shown to outperform a simple extension-based

control method for volumes of 400-1500vph (vehicles per hour), while the extension

controller performed better on volumes less than 400vph. When speaking about the

rulebase of FUSICO, the authors state that rulebase creation became complicated

when the number of possible phases increased from 3 to 4. This highlights a key con-

cern of fuzzy control design: how to design an effective set of rules. If 4 phases can

cause difficulty, the problem will be further compounded when working with a com-

plex intersection with twice this number of phases. A similar approach was presented

in Murat and Gedizlioglu (2005) and compared to those presented in Niittymaki and

Pursula (2000) and Pappis and Mamdani (1977). The new approach, however, does

not improve upon the two previous solutions.

While the fuzzy control approach was much the same as seen in other proposals,

Wei et al. (2001) proposed using a genetic algorithm to optimize parameters of the

fuzzy controller to improve functionality; however, little detail was given on the im-

plementation or effectiveness of this idea. A genetic algorithm was effectively used

in Heung et al. (2005) for rule generation in a fuzzy traffic controller. A set of fuzzy



40

Table 3.6: Advantages and disadvantages of using fuzzy logic for intelligent traffic
signal control

Advantages Disadvantages
Simple.
Generally rely on easy to obtain obser-
vations.
Controls in real time.
Distributed.

Difficult to extend to complex inter-
section logics.
Static/Non-learning - fail to adapt to
changing traffic demands.
Tested on small networks only.
Commonly requires expert knowledge
or trial-and-error to produce rulebases.
Have not been tested within a realistic
environment.

rules was maintained for offline evaluation, in which the effectiveness of different rule

combinations was analyzed. If an appropriate performance increase was found regu-

larly while using a specific rule, that rule would be promoted to the knowledge-base

and used within the fuzzy controller. Using the optimized rulebase, the authors were

able to realize small improvement gains over a non-optimized set of rules.

3.8 Decision Support Systems

The main goal of a decision support system is to propose possible effective signal plans

to human operators, making the human operator more efficient and informed. While

this is not exactly intelligent traffic control, simply bypassing the human operator and

implementing the best plan would allow these systems to control a traffic network (it

is for this reason that these types of systems are included here). Typically, decision

support systems rely on a pre-created list of traffic scenarios and possible control

actions (along with the estimated effectiveness of these control actions). These lists

are created using human traffic experts and historical traffic data, which can be very

time consuming. Also, relying on this type of list means the system can be incapable

of addressing unexpected problems that are not captured within the database. Per-

formance may degrade significantly then, if the system can not make proper decisions

due to the limitations of the scenarios list. Also, these types of systems can suffer



41

in the same way that fixed traffic plans do as the traffic dynamics change and the

original assumptions become invalid.

One of the first researchers to propose a traffic decision support system was Cuena

(1995). This work divided the entire network into subnetworks of a manageable size,

with a single agent used to control each subnetwork. These agents were each aware

of some key information: the network design, possible conflicts and possible control

actions.

Similar to the above mentioned approach, Hegyi et al. (2001) and De Schutter

et al. (2003) implemented a decision support system which uses fuzzy logic to classify

traffic states. Once again, the entire network is broken into smaller subnetworks,

each of which has a specific casebase that is generated offline. Each case within

these casebases represents a specific traffic situation, control measure and predicted

effect. In the event of an unrecognized traffic state, fuzzy logic is used to compare the

observed state to the states described in the casebase. Based on the level of similarity

the observed state has with various cases within the casebase, the effectiveness of the

control actions outlined by the similar cases can be predicted. The action with the

highest predicted effectiveness is then implemented by the control devices within the

subnetwork. In the later work, prediction of traffic flows in and out of the subnetwork

over a period of time is also included. This prediction allows for the effect of other

intersections’ decisions to be considered automatically, eliminating the need for a

coordinating agent. The performance of the system, however, could severely degrade

if the actual state is not close to any of the states specified within the casebase, as

fuzzy logic will not be able to select a similar case.

A fuzzy neural network based decision support system was described by Almejalli

et al. (2007a, 2008). A flowchart representing the operation of this system is included

in Figure 3.3. As with the work completed by Hegyi et al. (2001) and De Schutter

et al. (2003), the most important piece of information in this system is the set of

possible control actions available for each traffic situation. From the diagram, it can

be seen that the set of states and control actions are generated from experiential

human knowledge coupled with historical traffic data and available traffic control

devices, which can be tedious and problematic in the long term. Not only does the



42

Tra�c State from

Sensor Data

Historical Data

Tra�c Operator

Available Tra�c

Control Devices

Possible Control

Measures

Fuzzy Neural

Network Tool

Ranked List of

Control Measures

Figure 3.3: Flowchart for the system developed by Almejalli et al. (2007a, 2008)

list of states and control actions need modified as traffic parameters change over time,

but the list also would not apply if the topology of the network were to change (e.g., a

long term construction project closes several lanes). The fuzzy neural network (which

has a structure similar to that shown in Figure 3.5) takes both traffic conditions

(available from sensor data) and control actions as inputs. The first step involves

converting these inputs into fuzzy membership values (e.g., traffic density is high,

medium or low). From these values, there are a number of neurons which each

represent a single fuzzy rule (the fuzzy rules themselves are identified using a GA,

as proposed in Almejalli et al. (2007b)). Each of these fuzzy rules considers a set of

possible traffic conditions and a possible control action, outputting expected traffic

measurements (such as waiting time will be low). These fuzzy outputs are then

defuzzified into exact fitness numbers, which allow each possible control action to be

ranked against the other actions. The effectiveness of this system to predict a traffic

situation after applying a control measure is shown by comparing the expected results

to those found from a simulation. The results found that the predicted traffic state

very closely resembled those found through simulation.



43

Table 3.7: Advantages and disadvantages of using a decision support system for
intelligent traffic signal control

Advantages Disadvantages
Have been implemented successfully
using real-world networks.
Assist human traffic operators in mak-
ing informed decisions.
Have been tested using realistic traffic
scenarios.

Rely on a centralized architecture.
Have not been used to make real signal
plan decisions.
Use a large amount of data which
is difficult to generate and is non-
adaptive.

In Almejalli et al. (2009), the aforementioned support system is extended into a

hierarchical framework (shown in Figure 3.4), with a coordinator agent (CA) being

used to decide globally effective sets of actions based on the suggestions of a number

of agents, each of which implements the fuzzy neural network previously mentioned.

For each subnetwork, the coordinator agent maintains a table (the CA table) which

details the possible effects any control action implemented within that subnetwork

may have on all other subnetworks. Agents controlling each subnetwork then use

the decision support system developed by Almejalli et al. (2007a, 2008) to propose

a ranked list of control actions. Using the CA table, the coordinator can predict

the effectiveness of a global set of control actions using the ranked lists of actions

provided by the lower-level agents. Through a case study consisting of 3 subnetworks

within a realistic model of a section of Riyadh, Saudi Arabia, the authors showed

that the coordinator agent was able to consider the effects of the actions on the other

subnetworks and determine which action each subnetwork should take.

3.9 Reinforcement Learning

Inspired by behavioural psychology, reinforcement learning (Kaelbling et al., 1996) is

a machine learning approach which allows agents to interact with the environment,

attempting to learn the optimal behaviour based on the feedback received from inter-

actions. This typically involves breaking the environment into states, from which each

agent can select a possible action. The reward gained from taking an action within

a state determines the level of reinforcement, which in turn affects the likelihood



44

Agent #2

Tra�c Observation

Decision Support System

Tra�c Device Control

Agent #1

Tra�c Observation

Decision Support System

Tra�c Device Control

Agent 31

Tra�c Observation

Decision Support System

Tra�c Device Control

Coordinator

CA2 CA1 CA3

Figure 3.4: Architecture of the hierarchical decision support system implemented by
Almejalli et al. (2009)



45

that the agent will select that action when it is next in that state. As agents in the

network monitor the traffic situation, they can identify problems as they occur and

select possible control actions to alleviate these problems. Since the actions of each

agent can affect the state in other subnetworks, a coordinator agent is included which

is capable of determining the compatibility of the differing control actions suggested

by the agents. This coordinator also has a notion of agent priority, so it is capable of

deciding which control actions (from those proposed) should be implemented by the

various agents.

Wiering (2000) and Wiering et al. (2003, 2004) presented one of the first rein-

forcement learning approaches to traffic signal control. These works assume that

the traffic environment can be represented as a Markov Decision Process (Puterman,

1994), which can be defined as M =< S,A, P,R >, where S is a set of states, A is a

set of actions, P is a transition function which determines the probability of moving to

the next state when choosing a specific action from a specific state and R is a reward

function which assigns a reinforcement value to each state/action/future state pair-

ing. While the P and R functions are not known a priori, they are inferred from the

experience of an agent as it interacts with the environment. It is unclear whether it is

valid to assume that a Markov Decision Process models traffic correctly. While it is

possible to predict a resulting traffic state from a state/action pair, this can certainly

be difficult in a large network with a large amount of interactions. Also, the number

of possible states within a large network can be extremely large, which may make

implementation of an MDP traffic model difficult. Within an MDP environment,

however, each agent interacts with the environment, receiving rewards based on the

actions they choose in various states. These rewards are used to induce a model which

represents the expected gain when choosing an action in a certain state. Eventually,

these values converge (if the assumptions hold true), at which point the maximum

expected reward can be chosen by the agent each time. The traffic domain, how-

ever, involves constantly changing traffic distributions, which hinder the performance

of reinforcement learning approaches designed to work in stationary environments.

Two possibilities for learning are identified by the authors here: traffic light learning

(which looks at the number of cars in each direction) and car-based learning (which



46

involves summing the estimated rewards for each waiting vehicle). The authors chose

the car-based learning approach (which makes traffic light decisions based on the

estimated rewards for each vehicle in the queues) noting that it can be difficult to

learn all possible situations a traffic node can experience. Through simulation, the

learning approach outlined was compared to several simple traffic control mechanisms

on a small 4x4 grid-like network and a small ‘city-like’ infrastructure. It was shown

that the learning algorithms performed consistently better than the others on both

network architectures, with an algorithm in which vehicles simultaneously learn bet-

ter route choices as they progress through the network achieving the highest level of

performance.

Steingröver et al. (2005) extend an approach similar to that described above by

adding neighbouring junction congestion levels into the intersection state description.

This addition can allow the intersections to learn how to cooperate with each other,

but also increases the size of the state space. This new method was compared in

simulation to the work shown in Wiering (2000) and Wiering et al. (2003, 2004) with

both fixed and varying traffic volumes. With fixed volumes, the new method cut

average trip waiting time approximately in half. The results were even more drastic

when varying traffic volumes were included, with improvements ranging from around

50-75% less.

One problem with the learning processes described so far within this section is that

they fail to adapt quickly in a non-stationary environment (where parameter values

describing the traffic state change quickly). Since the traffic domain could certainly

be considered non-stationary, de Oliveira et al. (2006) attempted to use reinforcement

learning with context detection (da Silva et al., 2006) to address this problem (in this

case, a context represents a specific traffic distribution). With this approach, multiple

models of traffic are maintained, each of which has a learning system associated with

it. Each learning system then, is responsible for learning how to optimally control

traffic that matches (or at least closely resembles) its corresponding model. An error

value can be calculated for each model, allowing the system to decide which model

matches the current traffic state, with the best matches being used to control the sig-

nals within the network. If no model exists with an error below a specified threshold,



47

Table 3.8: Advantages and disadvantages of using reinforcement learning for intelli-
gent traffic signal control

Advantages Disadvantages
Shown to converge to best solution (as-
suming assumptions hold true).
Effective at learning parameters that
do not change over time.

Can make invalid assumptions.
Fails to adapt quickly.
Difficult to handle traffic with varying
parameters using the same model.
Large amount of states required for a
large network.
Trial-and-error can be an ineffective
approach in a real world situation.
Have not been tested on realistic traffic
networks/volumes.

a new model will be created and the learning process will begin. The system begins

with only a single model, adding new partial models as required by changing traffic

parameters. Through simulation, it is shown that the context detection and multiple

models allow this approach to perform better than a standard reinforcement learning

approach when there is noise in the traffic volumes, as the traditional approach takes

a period of time to relearn everything each time the volumes fluctuate.

3.10 Neural Networks

Neural networks (NN) were used in Spall and Chin (1994) to search for optimal

signal plans. An entire day is divided into a number of intervals, with a single NN

determining signal plans for a specific interval. An assumption is made by the authors

that traffic situations in the same interval on varying days will be similar. When

looking at long time intervals (e.g., the 3 hour weekday morning rush period), traffic

levels are most likely quite similar from day to day, as a similar number of people

travel to the same place at the same time. This assumption may not apply as well,

however, outside of these typical rush-hour times and also may not apply within an

interval itself. On a short-term basis (e.g., 5 minutes), interactions and dynamics

can result in traffic volumes which vary from the average for the entire interval. This

assumption then, may hold true in some cases, but may also be false in many others.



48

The NN then, trains on each day over the interval it controls. On a simple 3x2 grid

network, using fixed insertion rates for the 2 main roads (high average volume) and

3 crossing roads (low average volume), it was shown that the NN control approach

could decrease the total system waiting time by nearly 35 percent over 50 training

days. This approach is investigated further in Spall and Chin (1997), using a 3x3

grid network. The volumes within the network are designed (using data from Rathi

(1988)) to match those of the Manhattan area the network is based on. The neural

network control was used for a 4 hour period over the evening rush hour, with one

test consisting of constant volumes throughout the 90 day simulation period and one

test increasing the volumes on all roads after 10 days. In the fixed volume case, the

NN approach to control was shown to decrease waiting time by approximately 10%

over a fixed timing scheme. It is also shown, however, that the NN approach takes

many days (approximately 20 to return to the initial value) to adapt to the increased

demand from the 10th day. This is because the neural network learns how to handle

a single traffic distribution in a highly effective manner. When the traffic volumes

change, the neural network must re-learn how to effectively control the traffic lights,

which takes time and results in a period of low performance. This is a common

problem that can be seen in machine learning approaches, as the system becomes

over-specified for controlling traffic with specific parameters.

Wei and Zhang (2002) combined both a fuzzy logic and neural network approach

to decide whether to extend a phase or not. An example of this type of control

architecture can be found in Figure 3.5. In this approach, measures of traffic volume

are initially used as input to a fuzzy neural network (layer #1 within Figure 3.5).

This input is then converted into fuzzy values (layer #2) so the fuzzy rule base (layer

#3) can be used. The output of the fuzzy rule layer is then defuzzified (layer #4)

which determines whether the light should be extended or switched. After a minimum

amount of time, the decision process is carried out every second until the light is either

switched or a maximum amount of green time has occurred (at which point the lights

change automatically). The performance of the fuzzy neural approach was compared

to that of a simple extension-based approach for a single intersection and multiple

volumes (with volumes remaining fixed for each simulation). Through simulation, it



49

Layer #1

Raw Data

Layer #2

Fuzzi!cation

Layer #3

Fuzzy Rules

Layer #4

Defuzzi!cation

Extension

Input #1

Input #2

Input #3

Input #4

Figure 3.5: Example fuzzy neural network taking 4 inputs and determining phase
extension

was shown that the fuzzy neural control results in 15-25% less stops as well as 15-30%

less average delay.

The power of fuzzy neural networks were combined with a hierarchical architecture

by Choy et al. (2003a,b). The hierarchical architecture divided the entire network into

smaller subnetworks, each of which is managed by an intersection controller agent.

These intersection controller agents observe traffic state and pass measurements to

a higher-level zone controller agent. The zone controller agents use a fuzzy neural

network (similar in structure to that used in the decision support system developed

by Almejalli et al. (2009, 2008, 2007a)) to calculate a zone signal policy and a zone co-

operation factor (which determines the level of cooperation required amongst agents).

Once zone policies are proposed, a conflict resolution process takes place to ensure

all policies that will be implemented are compatible. Online reinforcement learning

is also employed to constantly check the effectiveness of the fuzzy rule base. This

learning process is responsible for determining which neurons are connected within



50

Table 3.9: Advantages and disadvantages of using neural networks for intelligent
traffic signal control

Advantages Disadvantages
Like reinforcement learning, have been
shown to converge to acceptable solu-
tions under the right circumstances.
Can control in real time.
Can be distributed.

Adapt very slowly to changing traffic
parameters.
Some works require multiple models to
be maintained for various times within
a day.
The inner-workings of neural networks
are notoriously hard for humans to un-
derstand (e.g., why do we get the re-
sult we get).
Have been tested on single realistic
network only (with hypothetical vol-
umes).

the inner layers of the neural network (thereby determining the possible fuzzy rule

base). To evaluate the effectiveness of this system, a 25 intersection network was

implemented using data provided from the Land Transport Authority (LTA) of Sin-

gapore and the results of the proposed algorithm were compared to those used by

the LTA. Two scenarios were simulated using both control methods: one consisting

of 3 hours of simulation with a single volume peak and one consisting of 6 hours with

2 volume peaks. From these simulations, it was noted that the overall mean vehicle

delay was decreased by approximately 15% for the single peak scenario and nearly

30% for the double peak scenario. A further traffic scenario consisting of 24 hours

of simulation with a total of 8 traffic peaks is presented in Srinivasan et al. (2006).

The proposed controller maintained lower mean delays over all peak periods and also

performed much more effectively on later peaks, where the LTA control scheme began

to fail.



51

3.11 Summary

This chapter outlines a number of computational approaches that have been applied

to the domain of traffic signal control, each of which has its own advantages and dis-

advantages (outlined within Tables 3.1-3.9) Through analysis of the works presented

in this chapter, there are a number of requirements that the algorithms developed

in the remainder of this work should meet. First, the algorithms should be able

to adapt signal plans based on observed traffic state, without using historical data

(which tends to be inaccurate, resulting in inefficient signal plans). Second, the con-

trol systems developed should be distributed, which will increase both the scalability

and robustness of the system. Also, the controlling agents should rely solely on locally

available data (whether observed through sensors or communicated by neighbours).

As with distribution of computation, reliance on only local information increases the

robustness of the system, as the system avoids the problems inherent with complex

centralized communication and control networks. The algorithms should also be de-

signed and evaluated on traffic scenarios that closely represent those found in the

real-world. This will ensure that the algorithm is not only capable of solving simple

traffic problems, but is also applicable to real situations.

In the following chapter, a simple algorithm is developed which is capable of

adapting traffic signal plans in real-time using locally communicated information.

This algorithm will be evaluated on a simple traffic model/network and its perfor-

mance will be compared to other possible control methods. In a later chapter, the

creation of an algorithm that meets all of the requirements mentioned above will be

presented.



Chapter 4

A Simple Adaptive Algorithm for Traffic Control

4.1 Introduction

This chapter develops and evaluates a simple multi-agent traffic control algorithm

within the NetLogo (Wilensky, 1999) modelling environment. Through simulation of

various traffic distributions, it is shown that the algorithm’s adaptive nature allows

for successful signal control in a wide range of situations. The algorithm is also

compared to several other simple control measures, with the results showing the

adaptive approach is more effective overall than any of the other methods.

The chapter begins by describing the development of the traffic model within

the NetLogo (Wilensky, 1999) modelling environment (Section 4.2). This includes

a description of the original model (provided in the NetLogo modelling package), as

well as changes that were made to allow the model to function as required. Section

4.4.1 begins the description of the control system by explaining the various system

parameters included within the algorithms. This is followed by Section 4.4.2 which

describes the main control algorithm which updates the state of the simulation after

every timestep. Section 4.4.3 describes the algorithm that is used to generate signal

plans based on locally observed data and information available from neighbouring

intersections. The experimental setup used to evaluate the proposed algorithm is

included in Section 4.5, with the results found through simulation presented in Section

4.6. The chapter ends with a summary (Section 4.7) of the algorithm and results,

along with a short discussion of the work to be presented within the following chapters.

4.2 NetLogo and the Traffic Grid Model

To investigate the effectiveness of a distributed and adaptive traffic light control

scheme, the NetLogo (Wilensky, 1999) modelling environment was used. NetLogo is

52



53

Figure 4.1: A screenshot of the initial NetLogo Traffic Grid model

a freely available multi-agent modeling environment which allows simple models to

be created quickly and easily. The environment also offers an easy-to-use graphical

interface where the user can observe the modeled system’s operations, modify system

parameters and create graphs of important data. Furthermore, NetLogo also provides

many multi-agent models which can be used as the base for more advanced work,

including the Traffic Grid (Wilensky, 2003) model used here. The same Traffic Grid

model was also used in the traffic light control research completed by Gershenson

(2005), which motivated its use here. Details on the operation of the Traffic Grid

model are given below and an example of the model’s user interface is provided in

Figure 4.1.



54

4.2.1 Traffic Grid Driver Behaviour

The driver model used in the Traffic Grid model is extremely basic. First, vehicles

only travel in one of the two possible directions (left to right or top to bottom),

with no turning movements possible. Second, at each time step every vehicle either

accelerates by a fixed amount (when no other vehicles are in front and no red light is

present), sets their speed to slightly less than that of the vehicle in front of them (in

the case they are travelling the same direction), or sets their speed to zero (when a

crossing car is in front or a red light is present).

4.2.2 Traffic Grid Network

Like the driver behaviour, the traffic network within the Traffic Grid model is also

very simple. Intersections are equally spaced throughout the landscape in a grid

pattern. Intersections are connected to each other via one way roads, each of which

is one car-width wide. The network is also toroidal in nature, so a vehicle which

reaches the right or bottom edge of the landscape is automatically moved to the

opposite side. Using this approach, the number of vehicles in the network remains

fixed throughout the simulation. The initial (and final) number of vehicles within the

network is specified as a system parameter using the provided interface.

4.2.3 Traffic Grid Signal Control

Since there are only 2 traffic flows and single lane roads, there are only two signals to

be controlled at each intersection. In the initially provided model, the signals operate

in a fixed-time pattern with all up/down lights being the same and all left/right lights

being the opposite. The operation of these signals is one of the main changes made

to the model, as described in Section 4.3

4.3 Traffic Grid Model Changes

While the Traffic Grid model provided with the NetLogo environment was a great

starting point, two important changes were required to develop and evaluate the



55

adaptive traffic light control methods presented here. These changes are described in

the next two subsections.

4.3.1 Vehicle Volumes

As described in Section 4.2.2, the vehicle volumes in the original Traffic Grid model

remained constant. The first major change to this functionality was to remove the

toroidal aspect of the traffic network. Instead, vehicles were inserted at the left or

top end of each road and removed from the network when they reached the other

side of the landscape. The second change made to the initial model was the inclusion

of varying vehicle volumes. To achieve varying vehicle insertion rates, two variables

were added to the model representing the expected number of cars inserted every

minute (60 time steps) in either the left/right or up/down direction. At each time

step, a vehicle might be inserted at the beginning of all left/right or all up/down

roads. Whether to insert cars or not is decided probabilistically using the specified

vehicle rates. The insertion rates for each direction followed one of many prespecified

distributions, allowing an algorithm’s adaptability and versatility to be investigated.

A full description of the distributions used during evaluation is provided in Section

4.5.

4.3.2 Intersection Agent Behaviour

To allow for adaptive signal control, it is assumed that traffic signals no longer operate

under a fixed timing schedule. Instead, an intelligent agent responsible for controlling

a single set of signals is located at each intersection within the network. Each of these

agents possess several key characteristics:

• Local Observation - Each controlling agent is capable of making local observa-

tions of traffic state. It is assumed that each agent is aware of the number of

vehicles on approaching road segments at any given time. The observations of

each agent, however, are limited to the incoming roads of that agent’s intersec-

tion. There is no notion of global traffic state included within the model.



56

• Local Communication - Each agent is capable of communication with neigh-

bouring intersections. Once again, this communication is limited to neighbours

which are only one road segment away. No limitation is placed on the amount

of communication that can be performed, however, the data communicated in

this work is limited to the signal plan details of upstream intersection agents. It

is also assumed that this communication framework would be used to generate

the traffic state observations explained above. An example of how information

flows within the network using communication is shown in Figure 4.2.

• TimeWindow - An agent stores observations for a specific amount of time. After

this period of time has passed, older observations are forgotten completely.

4.4 System Control

4.4.1 System Parameters

There are several parameters which can affect the overall performance of the control

algorithm.

• Window Length (WL): This represents the life span of traffic state observations.

For example, if the window length parameter is 180, then there will be an

observation stored for each of the last 3 simulation minutes. Observations older

than this period are forgotten.

• Update Interval (UI): This determines how long agents should operate until

they update their signal plan. When this number of simulation steps (seconds)

have elapsed, each agent will calculate a new signal plan and begin to implement

it immediately. For this reason, the update interval is generally a multiple of

the cycle length.

• Current Time Weight (CTW ): Initial observations found that agents often

overcompensated for extremely recent changes in traffic flow, changing signals

in a way that did not match the underlying traffic distribution. For this reason,

the current time weight parameter was added to the algorithm. As can be seen

from the algorithm detailed in Section 4.4.3, this parameter is used to force the



57

 Information Flow

Figure 4.2: Information flow through the NetLogo network model



58

agent to balance between the plan it had been implementing and the plan it

now wishes to implement. In other words, the CTW parameter adds inertia to

the system. This stops the signal plans from fluctuating wildly and allows the

agent to match the underlying traffic distribution more accurately.

• Neighbour Weight (NW ): Several previous works on traffic control, including

that by France and Ghorbani (2003), mention intersection coordination as an

important aspect in traffic signal control. In this case, it was thought that

if an agent coordinated with upstream neighbours on plan selection, that the

downstream agent could select a plan that will better meet the short-term traffic

requirements. This is because upstream neighbours will have considered the

amount of vehicles present at their intersections when calculating their own

signal plan and these vehicles will continue downstream when they receive a

green light. To a certain extent then, agents can predict future traffic state by

considering the decisions being made by upstream controlling agents. This is

the main motivation behind the inclusion of the neighbour weight parameter in

the controlling algorithm.

• Vehicle Insertion Rates (NS Rate and WE Rate): These rates determine the

expected number of vehicles to be inserted onto the roads every minute. Due to

the probabilistic insertion of vehicles, the actual number of vehicles inserted will

vary. The insertion rates can also be modified throughout a simulation, allowing

varying vehicle volumes, which demonstrate the adaptability and robustness of

the control system.

• Cycle Length (CL): The global cycle length for all intersections within the

model. While this value can be modified throughout a simulation, it remained

constant (at 60 simulation steps) within this work.

• Minimum Green Time (MGT ): This is the minimum amount of time a light

must be in the green state during each cycle. This value is used to ensure that

no approaches are starved for time which would result in vehicles waiting an

unacceptable amount of time to pass through an intersection.



59

4.4.2 Model Control Algorithm

All entities within the model must be updated after every timestep. The algorithm

specifying the actions taken for each timestep is shown in Algorithm 1. Lines 1-10

of the algorithm include details on how vehicle state (including location and speed)

is updated each timestep. The actions performed by each intersection are shown in

lines 11-19, including the possible signal plan update (line 17) which is presented in

more detail within Algorithm 2. These steps involve the removal of observations that

are now outside of the time window, as well as the addition of new observations based

on the current traffic situation. Finally, the probabilistic insertion of vehicles (lines

20-27) is completed in such a way that, on average, NS Rate and WE Rate vehicles

will be inserted every minute onto the N/S and W/E roads respectively.

4.4.3 Signal Plan Calculation

Algorithm 2 details the signal plan update process used by intersection agents within

the NetLogo model. Since only two phases exist for each traffic signal within this

simple model, only a single phase length needs to be calculated to determine the

lengths of both (with the remaining cycle time being devoted to the other phase).

The majority of the algorithm presents the steps for calculating the amount of green

time for the West direction, with only the last line being devoted to determining

the green length for the North direction. The first step of the algorithm (lines 1-3)

requires the calculation of average volumes over the time window for both directions

(AVW and AVN), as well as the proportion of this volume that was found in the lane

approaching from the West (PW ). Using this proportion, an initial green time can be

calculated by supplying the West direction with that proportion of the entire cycle

(line 4).

After an initial green length has been calculated, the neighbour weight parameter

can be applied to modify the green time to be more like those of the agent’s upstream

neighbours (line 5 of the algorithm). Here, the initial green time is decreased to a

percentage of the original (determined by the value of the NW parameter) and in-

creased by a value representing the length of green time in the west direction that



60

/* Vehicle location and speed update */

1 foreach Vehicle do
2 if At red light or vehicle ahead travelling in opposite direction then
3 Speed = 0
4 else if Vehicle ahead travelling in same direction then
5 Speed = max(0, Speed of vehicle ahead - Acceleration)
6 else
7 Speed = min(Speed Limit, Speed + Acceleration)
8 end
9 Position = Position + Speed

10 end
/* Update of intersection state */

11 foreach Intersection i do
12 Remove oldest observation from West Observations
13 Remove oldest observation from North Observations
14 Add current amount of vehicles on west approaching lane to

West Observations
15 Add current amount of vehicles on north approaching lane to

North Observations
16 if UI steps have passed since update signal plan update then
17 UpdateSignalPlan(i)
18 end

19 end
/* Probabilistic vehicle insertion */

20 Num = Random number from 0-59
21 if Num < NS Rate then
22 Insert vehicles at beginning of all N/S roads
23 end
24 Num = Random number from 0-59
25 if Num < WE Rate then
26 Insert vehicles at beginning of all W/E roads
27 end

Algorithm 1: Control Loop for NetLogo Simulation



61

upstream neighbours are currently implementing (available through local communi-

cation). The set X used within the calculation on line 5 is the set of all upstream

neighbours. Generally the size of X is 2, but boundary intersections can have 1 or 0

upstream neighbours (in the case of 0 neighbours, no NW calculation is performed).

After neighbouring plans have been taken into account, the final steps of the

algorithm (lines 6-9) involve limiting the amount of change the agent can make and

bounding the variables. The amount of change is limited based on the value of the

CTW system parameter. As can be seen in line 6, the green time is calculated using

a weighted sum of the current green time (CGT ) and the green time calculated so far

by the agent. Once this value is known, the value is bounded such that a minimum

green time (MGT ) is allowed for each direction every cycle. With the final amount

of time dedicated to the West direction calculated (line 8), the amount of green time

for the North traffic flow is calculated by subtracting the West time from the total

cycle length (line 9). The controlling agent will then implement a plan using these

two green lengths until the next update time.

/* Calculate average volumes over the time window and proportion

of total volume for the west direction */

1 AVW = Average(West Observations)
2 AVN = Average(North Observations)

3 PW = AVW

AVW+AVN

/* Calculate initial green time for west light based on

proportion and cycle length */

4 TG1 = PW × CL
/* Update the green time based on neighbour influence */

5 TG2 = (1−NW )TG1 +NW (
∑

iϵX
TGi

|X| )

/* Weight the green time using CTW and ensure the times are

bounded */

6 TG3 = (1− CTW )TG2 + (CTW × CGT )
7 TG4 = max (TG3,MGT )
8 TGW = min(TG4, (CL−MGT ))
9 TGN = CL− TGW

Algorithm 2: Signal plan update for an intersection in the NetLogo model



62

4.5 Experimental Setup

To investigate the ability of the proposed algorithm to control traffic flow, the per-

formance of the adaptive approach was compared to that of several other control

schemes, outlined below:

• Fixed 30/30: Fixed phase lengths of 30 steps each.

• Fixed 40/20: Fixed phase lengths of 40 steps for the West light and 20 steps

for the North.

• Fixed 20/40: Fixed phase lengths of 20 steps for the West light and 40 steps

for the North.

• Task Allocation (TA): This control scheme uses the algorithm developed by

de Oliveira and Bazzan (2007).

A number of different traffic distributions were created to the performance of

each control scheme over a wide range of circumstances. The distributions (de-

scribed in detail below) consisted of fixed volumes (Fixed Even, Fixed 2:1, Fixed

4:1), smoothly varying volumes (Sin/Cos, Fluctuate 1, Fluctuate 2), randomly vary-

ing volumes (From File1-From File10) and the distribution used by de Oliveira and

Bazzan (2007) which keeps traffic volumes fixed for long periods of time before dras-

tically changing them.

• Fixed Even - Both the N/S and W/E rates are held at 7.5 cars per minute for

the entire simulation.

• Fixed 2:1 - The W/E rate is held at 10 cars per minute, while the N/S rate is

held at 5 cars per minute.

• Fixed 4:1 - The W/E rate is held at 12 cars per minute, while the N/S rate is

held at 3 cars per minute.

• Task Allocation (TA) - This distribution is taken from the work of de Oliveira

and Bazzan (2007). The distribution begins with 12 cars per minute in the



63

W/E direction and 3 cars per minute in the N/S direction. The values do not

change, but the directions they are assigned to switch at the following specific

time intervals (all listed in simulation minutes): 60, 180, 300, 480, 660. For

example, after 60 simulation minutes the volumes will alternate and there will

be 12 cars inserted per minute in the N/S lanes and only 3 cars per minute

inserted into the W/E direction. This switch happens at every one of the time

steps listed.

• Sin/Cos - This distribution uses the equations below to calculate new rates at

every minute. RWE represents the cars per minute in the W/E direction, while

RNS is the cars per minute inserted in N/S lanes. CM is a variable representing

the current minute of the simulation (which will range from 0 to 719). Using

these equations, a total of 10 vehicles per minute will be inserted in total, while

the level in each direction will fluctuate between 0 and 10 vehicles per minute.

RWE = (((cos (90 + CM)) + 1) ∗ 5)

RNS = ((sin (CM) + 1) ∗ 5)

• Fluctuate 1 (F1) - In this distribution, the N/S rate is held constant at 7 cars

per minute for the entire simulation, while the W/E rate varies. Beginning

at 0 simulation minutes, the W/E rate is at 2.5 cars per minute. The W/E

rate begins to increase at 90 simulation minutes, finally peaking at 11 cars

per minute at 225 simulation minutes. This value is held until 300 simulation

minutes, when it begins to decrease, reaching a low of 6 at 375 simulation

minutes. It immediately begins rising again, reaching 11 cars per minute at

555 simulation minutes. This value is held until the end of the simulation (720

minutes).

• Fluctuate 2 (F2) - The W/E rate in this distribution varies as in Fluctuate 1.

The N/S rate also varies in this distribution, being set to 11 − RWE. Like the

Sin/Cos distribution, the total rate of insertion remains constant at 11 vehicles

per minute, however the rates of both directions fluctuate.

• From File (FF1-FF10) - These distributions consists of random fluctuations of



64

the N/S and W/E rates every minute of the simulation. Since each distribution

consists of 720 entries for each direction, they cannot be described in full here.

Instead, the method used to create the distributions will be described, allowing

similar distributions to be created easily. First, each direction is assigned a

random rate between 0 and 11 to begin the simulation. At each simulation

minute, each rate has a random normally distributed (µ = 0, σ = 1) number

added to it. The rates remain bounded between 0 and 11 however, to ensure the

network does not become supersaturated. Using this method, the rates in both

directions randomly fluctuate up and down throughout the entire simulation.

Ten distributions generated using this method were saved and used as FF1-FF10

in testing.

Due to the random nature of the environment, a number of simulation runs are

required to determine any significant conclusions. For this reason, each algorithm

was simulated 25 times on each of the distributions. For each simulation, the average

trip length for every vehicle was calculated and used to compare the performance of

each algorithm. Since a shorter average trip length implies that vehicles (at least on

average) travel faster through the network, this is a generally accepted performance

criterion for comparing traffic control measures. When used for control within a

simulation, some algorithms performed extremely poorly on several distributions.

This poor performance would result in a large number of vehicles being present in

the network as roads backed up and complete grid-lock stalled all traffic, resulting in

extremely long simulation times as each vehicle must be updated every second. For

this reason, an algorithm was determined to have ‘failed’ in controlling traffic in any

case where the number of stopped vehicles within the network exceeded 2000. The

results generated from these experiments are presented, in detail, within Section 4.6.

4.6 Experimental Results

The results found through simulation are presented in both Table 4.1 and Figure

4.3. Table 4.1 presents the average trip time for the entire simulation, along with

the standard deviation in trip time. The results of the algorithm presented here

are bolded under the ‘Prop Avg’ column, while the best other algorithm is also



65

Table 4.1: NetLogo simulation results for each algorithm/distribution combination
Distribution/Algorithm 30/30 Avg 30/30 SD 40/20 Avg 40/20 SD 20/40 Avg 20/40 SD TA Avg1 TA SD Prop Avg Prop SD

Fixed Even 224.80 0.69 Failed Failed Failed Failed Failed Failed 231.67 1.56
Fixed 2:1 281.06 34.79 206.15 1.64 Failed Failed Failed Failed 221.36 1.21
Fixed 4:1 Failed Failed 192.10 0.93 Failed Failed Failed Failed 199.23 1.81

TA 261.15 12.63 Failed Failed Failed Failed Failed Failed 224.13 1.88
Sin/Cos 238.80 11.70 Failed Failed Failed Failed Failed Failed 179.07 1.05

F1 302.95 42.52 Failed Failed Failed Failed Failed Failed 244.76 11.35
F2 341.09 57.99 514.40 29.67 Failed Failed Failed Failed 171.24 0.95
FF1 367.64 59.83 217.03 60.48 Failed Failed Failed Failed 215.88 1.88
FF2 213.60 4.34 Failed Failed 312.59 23.31 Failed Failed 213.77 1.02
FF3 230.94 22.42 685.37 59.73 Failed Failed Failed Failed 217.63 1.86
FF4 292.61 86.30 356.38 23.84 Failed Failed Failed Failed 213.34 1.26
FF5 312.12 57.31 205.67 1.29 Failed Failed Failed Failed 213.47 1.07
FF6 200.17 3.43 264.15 20.16 772.78 81.58 380.27 62.51 196.92 0.96
FF7 282.59 55.59 410.92 41.53 Failed Failed Failed Failed 208.47 1.52
FF8 195.31 1.91 417.11 29.03 221.67 11.68 171.41 26.18 183.52 1.26
FF9 238.38 19.69 Failed Failed Failed Failed Failed Failed 229.05 4.79
FF10 381.49 122.85 202.38 1.57 Failed Failed Failed Failed 197.14 0.86
Bests 2 3 0 1 11

Failures 1 6 14 15 0

bolded for easy comparison/reference. It can be noted from Table 4.1 that the best

performance for the fixed distributions was found using fixed plans. Also, the number

of vehicles within the first two distributions (Fixed Even and Fixed 2:1) matched

exactly the proportion of green time assigned by the two fixed plans (30/30 and 40/

20 respectively). In these cases, the proportional algorithm performs worse, but the

average trip time increases by no more than 8%. The adaptive algorithm, however,

can make up for these losses by performing much better than the fixed plans on

distributions where the volumes vary throughout the simulation. The bottom rows of

Table 4.1 also paint a clear picture on overall performance. As can be seen from the

total failures for each algorithm, the task allocation approach failed on all but two

of the distributions (even failing to perform well on the distribution it was originally

evaluated on). The only algorithm that did not fail in any case was the adaptive

algorithm proposed here. Also, the adaptive algorithm achieved the best travel time

on 11 out of 17 total distributions (or approximately 65% of cases).

Figure 4.3 presents comparisons between the adaptive proportional algorithm and

the best performing of the other control schemes. Within the figure, the average travel

time for that distribution is plotted, along with error bars representing 1 standard

deviation. From Figure 4.3, it is easily seen that the adaptive algorithm outperforms

all others in the majority of cases and performs nearly as well in all other cases. The

1Using algorithm specified by de Oliveira and Bazzan (2007)



66

Figure 4.3: NetLogo proportional algorithm vs. best other algorithm, shown with 1
standard deviation error bars

standard deviations shown also demonstrate an advantage of the adaptive algorithm.

In many cases, the fixed control schemes result in extremely high standard deviations,

with the largest being over 29% of the mean trip time. In comparison, the adaptive

algorithm maintains a standard deviation of less than 1% of the mean travel time in

all but 2 of the cases (with the largest still being under 5%). The reason the adaptive

algorithm has much less deviation than the fixed schemes is that the controlling

agents will change signal plans to address congestion on incoming roads. This is

especially important in a probabilistic environment, as a large number of vehicles

can be inserted quickly, which a fixed plan may fail to handle appropriately. If the

situation is serious enough, it can have long lasting effects on overall performance, as

vehicles will continually fail to move efficiently through the network while high levels

of congestion remain. The adaptive plan is successful as it infers a traffic model in

real-time and uses that model to allocate resources in an effective manner.



67

4.7 Summary

In this section,an adaptive multi-agent traffic control approach was evaluated through

a simple simulation of traffic. A model for implementing this multi-agent control

scheme, requiring only vehicle sensors and local communication (two readily available

tools), was developed within the NetLogo modelling environment (Section 4.2).

The overall effectiveness of the proposed system was compared on a wide range

of traffic distributions against several simple control schemes (explained in Section

4.5). The results presented in Section 4.6 showed that overall, the adaptive algorithm

performed much better than fixed traffic plans. It was shown through the simulation

results that the multi-agent adaptive control algorithm was very robust, handling

a wide range of traffic distributions successfully while other approaches failed. It

was also shown that the algorithm maintained much less deviation in travel time

than the fixed approaches, as the adaptive nature allowed it to cope with unexpected

fluctuations in traffic volume.

With these benefits being mentioned, it is worth noting that there is still a large

number of changes that must be considered to make this control scheme applicable to

real-world traffic control. First, the algorithm must be extended to allow a variable

amount of phases, as the number of phases at each intersection within a real traffic

network can vary. Also, while the effectiveness of the algorithm has been shown

on many simple distributions using an extremely simple traffic model, it must be

confirmed that the algorithm is also successful when dealing with traffic volumes

found in a real situation. Finally, the algorithm must address the more complex

street networks found beyond this simulation, including a varying number of lanes,

different numbers of incoming edges, as well as lanes with different purposes (e.g.,

turning lanes). In Chapter 5, a real-world traffic model is developed and a set of

realistic vehicle routes is created. Following the model creation, Chapter 6 presents

an improved control scheme which is capable of successfully controlling traffic within

a more realistic traffic simulation.



Chapter 5

Modelling a Realistic Traffic Scenario in SUMO

5.1 Introduction

While Chapter 4 developed a simple algorithm and showed its ability to effectively

control traffic, it also used a very simple network and traffic model for testing. This

chapter deals with the creation of a realistic traffic model to test the intelligent control

algorithm that will be proposed in Chapter 6. To create a realistic model, a section of

the downtown area of the City of Ottawa was modelled within the SUMO simulation

environment. Details on why the SUMO traffic simulator was chosen are provided

in Section 5.2, while a brief description of the SUMO software package is supplied

in Section 5.3. Motivation for the selection of the modelled area, as well as details

on the creation of the network within SUMO are provided within Sections 5.4.1 and

5.4.2. Once the network was completed, vehicle routes to be used in the simulation

were generated using data provided by the City of Ottawa for the modelled traffic

network. The data supplied consisted of single day observations of vehicle numbers

for each intersection within the modelled area. Details on the data supplied, as well

as the process used to transform this data into vehicle routes, is given in Sections

5.4.3 and 5.4.4.

5.2 Reasons for Choosing Sumo

As can be seen from the summary of microscopic traffic simulators in Table 2.1, there

are a number of available simulators to choose from. After analyzing the goals of

this project, considering the direction of possible future work and investigating the

offerings of the various simulators, it was decided that the SUMO traffic simulator

should be used. There are a number of important features offered by the SUMO

simulation environment which factored into this decision detailed below.

68



69

SUMO Simulation

Vehicle

Car Following Model

Lane Changing Model

Routing

Vehicle State

Network

Edge

Lane

Link

Junction

Intersections

Signal Plan Logic

Intelligent Control

Devices

Induction Loops

Emission Calculators

Other Vehicle Monitors

Figure 5.1: Several SUMO modules which may be modified to produce new be-
haviour/features

• Open Source: There are several advantages of using an open-sourced package

such as SUMO. For one, if required, it can be modified in any way the user

desires/requires (e.g., updated driver models or new traffic devices). Figure 5.1

shows several of the modules that can be modified within the SUMO simulation

engine. Second, being able to view the source code can help in finding errors

within one’s own work. Also, the software is provided free of charge, which

certainly fits into any budget that may exist. Further to these advantages, an

open source project allows other researchers to easily check/validate the work

undertaken, which generally results in more robust software.

• Development Community: As with a large number of open-sourced software

packages, SUMO has an active development community. Members of the mail-

ing list include people ranging from first time users, to the people responsible for

developing SUMO from the beginning. This active community makes it easy to

find support when working with the software, which can be invaluable whether

you are just beginning with SUMO or are an experienced user. Also, it was

found that developers working full-time on SUMO were involved in the mailing

list, allowing problems that did arise to be addressed in a timely manner.



70

• Portability: While SUMO is only openly supported for the Windows and Linux

operating systems, it can also be easily built for use under Mac OS X. While

this may not be an important contributing factor for some users, it certainly has

helped throughout the work conducted here. With many simulations to run,

an extremely large amount of computing time has been required. Fortunately,

there has been a number of available computers to execute simulations on; a

number that would be much smaller had SUMO only supported one of the above

mentioned operating systems.

• GUI: A graphical user interface (GUI) can be indispensable when initially de-

veloping a control system. It is much easier to identify problems as they occur

using a GUI as opposed to text-based output. It is also easier to immediately

evaluate the effect a control measure is having at an isolated location (e.g.,

a single intersection) when vehicle movements can be reviewed. The use of a

GUI becomes less important after the system has been developed, but was truly

helpful in developing the system presented here.

• Control of Simulation: A user can control every entity within a simulation

easily through the supplied Traffic Control Interface (TraCI). This includes

traffic signals (which was one of the main requirements of this work), as well as

vehicle behaviour.

• Speed: The SUMO simulator was designed to execute quickly. In fact, SUMO

can execute up to 100 000 vehicle updates per second on a 1GHz computer

(SUMO Features, 2011). When running thousands of simulations, efficient ex-

ecution is very important, as even a small increase in speed over a competitor

results in significant time savings.

• Large Network Support: SUMO is capable of handling extremely large net-

works. It has been shown to be capable of modelling networks consisting of

tens of thousands of edges (SUMO Features, 2011). While this factor is not

very important for the work presented here (with a relatively small network),

it is beneficial as it allows future work to expand to large networks if desired.



71

• Used by Others: SUMO has been used in several other traffic research works,

including Garćıa-Nieto et al. (2011) and Passos and Rossetti (2010).

5.3 Included Applications

The SUMO software package supplies users with a number of useful programs for

creating and running traffic simulations. The available programs are explained briefly

below, while more detail on the use of a subset of these programs is given in subsequent

sections.

Simulators

• SUMO: The base simulation of the entire SUMO software package which runs

from a command line.

• GUISIM: A graphical version of SUMO, which takes the same input and cre-

ates the same output, along with a graphical representation of the simulation.

GUISIM provides a number of options for automatic colouring of the simulation,

such as changing edge colours to represent the speed, congestion, or emissions

from each edge.

Network Generators

• NETCONVERT: Converts a wide range of possible inputs into SUMO readable

road networks. Networks can be created from XML descriptions or automati-

cally generated from OpenStreetMap (OpenStreetMap, 2011). NETCONVERT

also supports (to varying degrees) import of networks from a few other traffic

simulators (e.g., VISSIM (2011)).

• NETGEN: Allows for the automatic creation of abstract road networks. This

can be used to easily generate a number of networks easily and quickly.



72

Route Generators

• DUAROUTER: Generates shortest path routes for vehicles. The input to

DUAROUTER consists of a network, as well as demand definitions for the

simulation. The demand definitions can be in the the form of specific trips

(departure time, origin, destination) or flow specification (origin, destination,

beginning interval time, ending interval time, number of vehicles). Origins and

destinations can also be supplied as specific edges, or as districts (sections of

the network).

• JTRROUTER: Generates routes based on traffic flows and turning ratios. JTR-

ROUTER requires that turning ratios be specified over a number of intervals for

each edge vehicles can leave. Vehicle flows (number of vehicles inserted on an

edge over a specific interval), as well as ’sink’ edges (edges where vehicles leave

the network automatically upon arrival), must also be defined. From these in-

puts, JTRROUTER generates vehicle routes by probabilistically selecting the

next edge for each vehicle at each junction until that vehicle reaches a sink

edge. To prevent the (theoretical) chance of infinite trips, a maximum number

of edges within a trip can be specified.

• DFROUTER: Generates routes based on observed induction loop values. This

program is designed to take observations made by induction loops within real-

world networks, where each entry/exit point of the network has an induction

loop present. From these observations, routes that closely resemble those of the

real-world network can be inferred for use within SUMO.

• OD2TRIPS: This program generates routes from data supplied in an origin-

destination matrix.

5.4 Model Creation

This section details the model creation process, as raw data is transformed into several

traffic simulator scenarios. There are three main steps required when creating a traffic

simulation: definition of the road network, specification of traffic volumes and route



73

Simulate

Select a Network

Area to Model

Smooth Gaps

Within Data

Raw Tra!c

Volume Data

Convert to Computer

Readable Format

Infer Tra!c

Flows

Calculate Turning

Ratios

Model Network Area

for Simulator Use

Probabilistically

Generate Routes

Identify Sink

Edges

Figure 5.2: Flowchart showing the movement from initial network identification to
simulation

generation. These three steps are explained in detail in Sections 5.4.1-5.4.4, while a

flowchart detailing the movement from raw data to traffic simulation is provided in

Figure 5.2.

5.4.1 Network Selection

The first step in creating the real-world traffic model was identifying and modelling

a section of the road network. After considering many factors, it was decided to use

a 9x7 grid-like area from the downtown area of the City of Ottawa. An outline of the

area chosen can be seen in Figure 5.3. There were a number of factors motivating the

choice of this network section, outlined below.

• Size: The modelled area consists of over 50 signalized intersections. While this

may not be considered a large network, it is considerably larger than many of

the networks used in previous traffic research (as can be seen from Chapter 3,

where small networks of 1-4 intersections are common). Also, modelling the

area involved encoding a large amount of information (traffic volumes, turning

ratios) and since this is the first work to model traffic using this data, no tools



74

Figure 5.3: An outline from Google Maps of the traffic area modelled



75

existed to simplify the process. For this reason, choosing an extremely large

network (for example, the entire city) would require a prohibitive amount of

data entry.

• Road Diversity: There is a wide range of road structure contained within this

network. Bay St. (Figure 5.4(a)) and Lyon St., for example, are low volume,

one-way residential streets with a small number of lanes and simple structure.

This can be compared to Elgin St. (Figure 5.4(b)), which has a high number of

lanes, high volume, turning lanes and advanced green signals. It was felt that

this diversity would aid in demonstrating the effectiveness and generalizability

of the proposed traffic controller.

• Available Information: To model the traffic flows found in the real-world, data

representing this traffic must be available. Also, to evaluate the abilities of the

adaptive distributed control structure developed, it would be advantageous to

have the signal plans currently used to control the area available for comparison.

Through the City of Ottawa, single-day traffic observations for each intersection

were made available, which consisted of both the traffic volumes and turning

ratios at each junction. Also, the City of Ottawa supplied a description of the

signal plans currently used to control the intersections within the modelled area.

• Significance: As mentioned above, the area considered is part of the downtown

core of Ottawa. This area experiences traffic volumes ranging from extremely

low (non-peak hours on residential streets) to very high (peak hours on main

streets). Again, it was thought that this variability would help to demonstrate

the robustness of the system outlined here.

5.4.2 Network Modelling

After selecting the area to model, it must be translated into a SUMO traffic net-

work. This process is made easier by the NETCONVERT tool supplied in the SUMO

software package, which allows the import of networks directly from OpenStreetMap

(OpenStreetMap, 2011). OpenStreetMap allows for a rectangular area of a traffic



76

(a) Bay St.

(b) Elgin St.

Figure 5.4: Example of intersections on Bay St. and Elgin St. from Google StreetView

network to be exported, which can then be imported into SUMO using the NET-

CONVERT tool. From Figure 5.5, which shows the network imported directly from

OpenStreetMap, it can be seen that some unnecessary edges are included, extending

far beyond the area to be modelled. For the purpose of this work. these outlying

edges are trimmed such that only a small part of each edge protruded past the last

street under consideration.

It should also be noted that the OpenStreetMap import incorrectly specified two



77

Figure 5.5: The initial SUMO network after OpenStreetMap import



78

extremely important traffic network features: number of lanes and the existence of

turning lanes. To rectify this problem, Google Maps with Street View (Google Inc.,

2011) is used to view actual network characteristics quickly and easily. Using the

information gathered, modifications can be made to increase the accuracy of the street

network within SUMO. One issue present is the fact that some street sections change

the number of lanes between intersections. This is common when a turning lane is

added to the street within a certain distance of an upcoming intersection. There is

no easy method to model these situations within SUMO, so additional lanes must

be added along the entire street section whenever a partial turning lane is required.

While this increases the network capacity and decreases the accuracy of the model

slightly, it was deemed a necessary adjustment. Also, since neighbouring intersections

are discovered by looking at the originating node of an incoming edge, each set of

neighbouring intersections must be connected via a single edge. To model road bends,

however, SUMO divides what is a single edge in the real traffic network into a number

of edges and nodes. For this reason, road curvature was also removed from the network

and intersections were connected by a single edge. This modification, however, has

little effect on the overall model as all intersections within the modelled area are

connected with edges that are nearly straight. Figure 5.6 shows the completed traffic

network which is used for experimental testing of controllers.

5.4.3 Traffic Volume Creation

After the traffic network is successfully modelled, the next step is to capture the

traffic volumes within the network from the data provided. Unfortunately, the traffic

volume data available is provided only in print form. A large amount of data entry

is therefore required to transform this data to a computer readable form. During

data entry, a single file detailing the supplied traffic volume information is created

for each intersection within the network. An example of the data generated by this

process can be seen in Table 5.1. There is no available traffic volume information for

four of the intersections within the network. Volumes for these intersections then, are

inferred from the exit/entry volumes of neighbouring intersections. A simple example

of the inference process is shown in Figure 5.7, with the available information from



79

Figure 5.6: The final SUMO network used for experimental tests



80

6
5

9
0

60

45
70150
80

7
0

80

Figure 5.7: Volumes inferred (in red) for an intersection based on known neighbour
volumes (in black)

neighbouring intersections shown in black and the inferred volumes for the unknown

intersection in red. In this case, the incoming and outgoing volumes over the interval

are equal; if they are not equal, the difference is addressed using a flow value (ex-

plained in Section 5.4.4). Also, it can be seen from Table 5.1 that there are gaps in

the available data for each intersection between the periods of 10:00-11:30a.m. and

1:30-3:00p.m. To smooth the transition between the known information, new inter-

vals of 30 minutes each are added to each intersection, with the volumes gradually

increasing/decreasing in proportion to meet the demands of the next known interval.

The algorithm used to automatically calculate the start time and volume of each new

interval is given in Algorithm 3. This simple smoothing process is acceptable for

this work, as the missing intervals are relatively short and infrequent. If the missing

intervals were more frequent, a more advanced smoothing approach such as spline

fitting (Reinsch, 1967) may be more appropriate.

Table 5.1: An example of the available traffic volume data for each intersection
Start End Northbound Southbound TOT Eastbound Westbound TOT FINAL

Start End LT ST RT SUB LT ST RT SUB TOT LT ST RT SUB LT ST RT SUB TOT FINAL
7:00 8:00 43 1 119 163 0 0 0 0 163 0 413 101 514 28 305 0 333 847 1010
8:00 9:00 57 1 213 271 0 0 0 0 271 0 537 95 632 28 342 0 370 1002 1273
9:00 10:00 69 1 174 244 0 2 0 2 246 0 388 66 454 34 348 0 382 836 1082
11:30 12:30 76 0 149 225 17 0 0 17 242 0 291 80 371 24 385 0 409 780 1022
12:30 13:30 67 1 131 199 0 4 0 4 203 0 275 95 370 22 385 0 407 777 980
15:00 16:00 51 0 131 182 0 0 0 0 182 0 383 93 476 22 392 0 414 890 1072
16:00 17:00 71 0 128 199 0 0 1 1 200 0 413 96 509 22 505 0 527 1036 1236
17:00 18:00 81 0 156 237 0 4 7 11 248 0 384 79 463 27 469 0 496 959 1207
8 Hour Total 515 4 1201 1720 17 10 8 35 1755 0 3084 705 3789 207 3131 0 3338 7127 8882



81

Input: Last V olume, Last Interval End, Next V olume,
Next Interval Start

/* Calculate number of intervals between available measurements

*/

1 Fill Intervals = Next Interval Start−Last Interval End
0:30

;
/* Calculate the change in volume required during each interval

*/

2 Delta V olume = Next V olume−Last V olume
Fill Intervals+1

;

/* Set start time and volume for each new interval */

3 for i from 1 to Fill Intervals do
4 Start Intervali = Last Interval End+ (i− 1)× 0 : 30;
5 V olume Intervali = round(Last V olume+ i×Delta V olumes);

6 end
Algorithm 3: Used to fill in missing intervals within the data

5.4.4 Scenario Creation

The SUMO software package includes a tool (JTRROUTER) for automatically gen-

erating routes probabilistically from supplied traffic flow and turning ratios. The

method of calculating these values from the available data (explained in Section 5.4.3)

is detailed below.

Turning Ratios

The turning ratios for each incoming edge are rather easy to calculate from the

available data. The total vehicles exiting each incoming edge is supplied, as well

as the partial sums for all turning possibilities. It is easy, then, to calculate the

turning ratio for each direction i using the equation below. This must then be done

for each interval and each incoming edge to determine the turning ratios to be used

throughout the simulation.

Ratioi =
Counti
Total

Traffic Flows

Traffic flows (the number of vehicles to be inserted/removed on an edge over each

interval) are slightly more difficult to calculate, but are required to model the net gain/



82

Figure 5.8: An example of flow computation for the four incoming edges of an inter-
section

loss of vehicles between intersections (e.g., from entering or leaving locations along the

edge). While the total number of incoming vehicles is known for each edge, the flow

depends on the number of vehicles entering the edge from neighbouring intersections.

Using information available from the network description, the origin intersection of

each incoming edge can be determined. The number of vehicles entering the edge

from the neighbouring intersection can then be compared to the number exiting the

terminal end of the incoming edge to determine the overall flow. Several examples

of flow calculations are shown in Figure 5.8. A SUMO-specific issue is the lack of a

negative flow model, which is capable of capturing a net loss of vehicles on an edge

over time (SUMO’s route generator supports only the addition of vehicles over time on

an edge). For this reason, any edge that has a net loss of vehicles over an interval must

be handled within the simulation itself by probabilistic removal of vehicles over the

specific time interval. Algorithm 4 shows the process executed during each timestep

to ensure the correct number of vehicles are removed from the edge over the interval.



83

1 foreach Edge in simulation with a negative flow interval do
2 V ehicles To Remove =

Number of vehicles still to be removed from edge in this interval;
3 Remaining Interval T ime =

Number of timesteps left in the edge’s current interval;
4 Random Number = Random number in [0,1] ;

5 if Random Number <= V ehicles To Remove
Remaning Interval T ime

then

6 Remove a random vehicle from edge;
7 V ehicles To Remove = V ehicles To Remove− 1;

8 end

9 end
Algorithm 4: Used to probabilistically remove vehicles from a edged that require
a negative flow over an interval

Sink Edges

With the turning ratios and traffic flows defined, the last piece of information required

to generate the routes is a list of ’sink edges’. These sink edges represent exit points

of the network, with a vehicle’s route being terminated when it reaches any sink edge.

For this work, the sink edges are defined as every boundary edge where the roadway

continues outside the intersections being considered.

Route Creation

Finally, the traffic flows, turning ratios, sink edges and network structure are used as

input for the JTRROUTER program. This program uses the defined traffic flows for

each edge to determine how many cars must be inserted during each interval. Start

times are then generated for each vehicle that must be inserted into the simulation

throughout the simulated time. The route each inserted vehicle follows can then be

generated probabilistically based on the turning ratios for each edge it travels. The

route generator continues to choose new edges for the vehicle until it reaches a sink

edge, at which point the route is terminated. Once these routes are generated, they

can be used as input for a SUMO simulation, where the vehicles will be inserted at

their specified start time, follow their route and be removed from the simulation upon

its completion.

The available data was used to run the JTRROUTER program 15 times, which



84

generated 15 different sets of vehicles routes. These 15 traffic scenarios were then

used to test the algorithm described in Chapter 6 and generate the results presented

in Chapter 7.

5.5 Summary

This chapter covered the creation of a realistic traffic model, based on real-world

data supplied by the City of Ottawa, within the SUMO traffic simulation environ-

ment. Reasons for choosing the SUMO environment (including portability, available

support, and open source licensing) were outlined (Section 5.2) and a brief description

of the available programs included within the SUMO software package (Section 5.3)

were provided.

The chapter included an insight into the reasoning used when selecting a traffic

area to model (Section 5.4.1), as well as details on the modelling process. These details

(shown in Section 5.4.2) included the initial automated import from OpenStreetMap

(OpenStreetMap, 2011), the removal of the unnecessary edges from the automatically

generated network and the modification of the network to better match that of the

real network. Also, Section 5.4.2 outlined several small changes that were made to

the network which made the modelling process much easier without sacrificing the

realism of the network model.

After describing the network creation process, Section 5.4.3 explained the process

of generating vehicle volumes and turning ratios for the network based on the data

supplied by the City of Ottawa. These volumes were then used in Section 5.4.4 to

create vehicle routes which could be used within the SUMO simulation environment.

With a realistic traffic model now available, the following chapter will detail the

control algorithm used by agents within the system to generate signal plans. The

vehicle routes which were generated (detailed in Section 5.4.4) are then used to test the

algorithm and compare the algorithm’s performance, with the results being presented

in Chapter 7.



Chapter 6

Distributed Adaptive Traffic Control Algorithm

6.1 Introduction

Chapter 4 detailed a simple algorithm for traffic control that was evaluated within

the NetLogo (Wilensky, 1999) modelling environment. This chapter introduces an

improved controlling agent model, as well as a new algorithm that is capable of op-

eration within a real traffic network. The algorithm presented has three important

characteristics: it adapts signal plans based on current (and predicted) traffic mea-

surements, it is a distributed system and it relies solely on localized communication/

computation.

The remainder of the chapter is organized as follows. First, the small number of

assumptions that are required when considering this algorithm are outlines in Sec-

tion 6.2. The improved agent model is then presented in Section 6.3, including an

explanation of all available information (both constant and observed/calculated) the

agent is aware of. A detailed explanation of all of the system parameters used within

the control algorithms is provided in Section 6.4. Section 6.5 explains the key char-

acteristics (mentioned above) of the control system in detail, including explanation

of the advantages each characteristic carries. The algorithm used by agents when

observing the network is given in Section 6.6, while the signal plan update algorithm

used by agents is detailed in Section 6.7. Further to the signal plan update algorithm,

Sections 6.7.3-6.7.7 provide algorithms for several proposed methods of traffic volume

calculation. Finally, a summary of the chapter’s contents is provided in Section 6.8.

6.2 Assumptions and Limitations

A small number of requirements are assumed to be met within this system. First,

it is assumed that each controlling agent has some means of communicating with

85



86

neighbouring intersections (by what means this is achieved is considered beyond the

scope of this work). Second, it is assumed that traffic sensors which are capable of

measuring the number of passing vehicles are located at the beginning and end of

each lane within the network, allowing for an accurate calculation of vehicle numbers.

While this is generally not the case in the real-world, sensors for this purpose do exist

and could be used in a real-world application. Further work in the area of vehicle-to-

vehicle and vehicle-to-infrastructure communication could, however, present a more

accurate and cost-effective method of generating these traffic measurements. These,

too, are considered beyond the scope of the research reported here.

6.3 An Improved Intersection Control Agent

Due to the added complexity of a real-world traffic scenario, an intersection control

agent requires an additional awareness of a number of properties. This added knowl-

edge allows the agent to deal with both the varying intersection structures found

in a real-world network, as well as the additional vehicle/signal dynamics required

when controlling real traffic. The various types of local information each agent is now

responsible for is detailed in Sections 6.3.1 and 6.3.2. It should be noted that the

intersection control agent still relies on only locally available data (whether through

direct observation or local communication).

6.3.1 Constant Information

It is assumed within this work that the intersection agent knowledge presented in this

section remains static. In the real world, this assumption generally holds true. In

the event that this information did change, it would simply require an update to the

state of the intersection control agent, which would reflect these changes immediately

in the controlling algorithm. This is one advantage over a fixed strategy, that may

require entirely new signal plans to deal with these changes (e.g., removal of a lane

from an incoming edge).

• Network Edges (IE/OE): The intersection control agent is aware of both its

incoming (IE) and outgoing (OE) edges within the network. This knowledge



87

includes the properties of those edges: length, number of lanes, speed limit and

origin intersection.

• Turning Lanes (TL): In some cases within a real-world traffic network, several

lanes of an intersection are assigned a dedicated phase to allow vehicles that

may have trouble proceeding through an intersection to do so safely and easily.

Within this work, the turning lanes (along with their phases) remain constant,

and are derived from the data provided by the City of Ottawa. Turning lanes

could, however, be modelled with an adaptable design, allowing the turning

lane signal to be aborted in real time if no vehicles are present. This leaves

more time to the competing flows at the intersection and increases the number

of vehicles which can pass through the intersection during the cycle.

• Neighbours (N): Intersection control agents must be aware of their neighbouring

intersections, as communication with neighbours is required for traffic state

observation. Not only is the communication necessary for the basic calculation

of traffic volume, but another interesting method of calculating traffic volumes

through neighbour-to-neighbour communication is presented in Section 6.7.7.

• Groups (G): A group, in the domain of an intersection control agent, represents

a set of compatible (non-opposing) traffic flows. Each intersection controls a

number of groups, each of which has a related set of signals. This signal set

is setup in such a way that it allows all flows within that particular group to

proceed, while the others must stop (or at least yield, in the case of turning

right during a red light). Once again, the groups used within this work were

derived from those specified within the signal plans provided by the City of

Ottawa. An example of a number of groups/signal plans is shown in Figure 6.1.

6.3.2 Observed and Calculated Information

Some information is not available through analysis and design of the traffic system.

The information presented below consists of knowledge that must be observed or

calculated by the intersection control agent.



88

Figure 6.1: Example of an intersection with four groups, showing the four correspond-
ing signal sets

(a) Signal plan for Group #1 (b) Signal plan for Group #2

(c) Signal plan for Group #3 (d) Signal plan for Group #4

• Traffic Observations: The control algorithm requires traffic observations to cal-

culate signal plans based on traffic volumes. These observations are made using

sensors within the road network at the beginning and end of each edge (begin-

ning sensor information is communicated from neighbour to neighbour). These

observations are made at specific intervals (defined by a system parameter), and

remain in the intersection control agent’s memory for a specific time window

(also a system parameter). As with the work described in Chapter 4, once the



89

time window has passed, the information is forgotten.

Another way of identifying the number of vehicles present is through the use

of vehicle-to-intersection communication. Using this approach, the data pro-

duced by sensors (which can carry inaccuracy due to noise) is replaced with

data communicated from the vehicles themselves (e.g., through smartphones or

other electronic devices). This type of approach was not used here, but further

discussion on this topic can be found in Section 8.2.3.

• Green Times: The agent calculates green times using the algorithm specified

in detail within Algorithm 6. One green time must be specified for each of the

intersection’s groups. Each group’s green time then represents the time within

the intersection’s cycle at which that group’s signal set will be enacted.

6.4 System Parameters

There are a number of parameters used within the control system, each of which is

explained below.

• Update Interval (UI): Used to determine how often each intersection agent

should calculate a new signal plan. A shorter update interval means the inter-

section agent can change the signal plan more quickly in response to changing

traffic volumes.

• Window Length (WL): Represents the length of time traffic observations are

stored in memory. A better estimate of overall traffic volumes can be found

using longer window lengths, as the larger number of observations smooths any

outlying values. This allows the controlling agent to create a more accurate

model of the traffic situation when creating signal plans. Older observations,

on the other hand, can become irrelevant and contribute to poor signal plan

generation. An optimal window length, then, would be long enough to smooth

anomalous values while not being so long that the observations are no longer

useful.



90

• Cycle Length (CL): The total length of time to be dedicated to the set of phases.

Typically, shorter cycle lengths are more effective in low volume situations,

while higher cycle lengths can alleviate problems found in high traffic volume

situations. For this work, however, the cycle lengths specified by the City of

Ottawa signal plans are used for each intersection throughout the day. These

cycle length values vary depending on the current time of day, and also consist

of different values for each intersection.

• Volume Calculation Method (V CM): This is the method used to calculate

volume measurements based on the observed traffic data. Five separate volume

calculation methods have been implemented and evaluated, all of which are

described in more detail within Sections 6.7.3-6.7.7.

• Observed Data (OD): Three different methods of making vehicle observations

have been compared. The first (NV) counts only the number of vehicles on an

incoming edge, while the second (NVPL) measures the number of vehicles on

an edge per unit of length. The third approach (SV) measures the total number

of vehicles currently stopped on an edge.

• Observation Interval (OI): This parameter determines the number of simulation

steps (seconds) between observations. For example, observations may be made

every second, or they may be made every 10 seconds to decrease communication

levels.

• Edge Balance (EB): With many groups consisting of multiple incoming edges,

it may be beneficial to consider only the edge with a higher level of congestion

(referred to as ME in future sections). This way the plan will allocate green

time based on the busiest of the group’s edges, instead of averaging the volumes

equally. This may help reduce congestion in cases where the traffic volumes may

vary widely between the edges within a group. Another value this parameter

may take is MESL, which considers only the maximum edge within the group

if that edge’s volume is significantly larger (twice the size of) than the edge with

the smallest volume measurement.



91

• Offset (OFF ): The offset time of the intersection signal plan, representing

the time within the cycle that the first phase will begin. As with the cycle

length, offset values were taken from the data provided by the City of Ottawa.

Discussion of dynamic generation of offset and cycle length is included in Section

8.2.1.

• Minimum Time (MT ): The minimum amount of time to be assigned to each

phase within the signal plan. This ensures that all traffic flows are allowed to

move at least once per phase to avoid starvation. Throughout this work, the

minimum time parameter is set to 8 seconds per phase, with 5 seconds of green

time and a 3 second safety interval (which sets all lights to red) to clear the

intersection.

Further to these parameters, which exist within all aspects of this work, two more

parameters are necessary when using alpha-beta filtering to predict traffic volumes.

Discussion of these two parameters is included in Section 6.7.6 which describes the

alpha-beta filtering process in detail.

6.5 Key Algorithm Characteristics

There are a number of important characteristics possessed by the algorithm presented

in this chapter. These characteristics, as well as their importance to traffic control,

are described in the following sections.

6.5.1 Adaptive

As will be thoroughly documented in Chapter 7, adaptive control in the traffic domain

offers a significant performance advantage when compared to static control methods.

As would be expected, traffic volumes fluctuate constantly and an adaptive control

mechanism is able to adjust to these fluctuations in real-time. In comparison, fixed

timing signal plans fail to adjust based on current traffic information. Also, with

a lack of sensor networks to generate observations regularly, fixed signal plans can

be created based on data measured infrequently by human operators present at an



92

intersection. At the time of their use, these observations may be out of date, or non-

representative of typical traffic volumes in the first place (in the case of an anomalous

traffic situation during the observation period).

The adaptive nature of the algorithm presented here can also have economical

benefits over fixed-timed counterparts. Bell and Bretherton (1986) has shown that the

efficiency of fixed timing plans can degrade at a rate of 3% per year. To maintain the

same level of efficiency, employees must be paid to travel into the traffic network and

observe the traffic state first hand. An adaptive controller, however, bases decisions on

current traffic levels and will operate with consistent effectiveness over time without

any tuning.

6.5.2 Distributed Control

A distributed approach to traffic control is beneficial for a number of reasons. First,

it allows for theoretically unlimited scalability, whereas a centralized system may

struggle to maintain enough computing power for effective control as the network

continually grows. This is especially important when considering real time control,

where a centralized system may have to calculate new plans on a cycle-by-cycle basis.

The latency inherent in a centralized system may make real-time control infeasible,

as solutions generated may no longer be effective once the time required to generate

them has passed. A distributed control scheme, on the other hand, requires each

agent to generate only a single signal plan no matter how large the network becomes.

Second, a distributed approach offers a more robust solution, which can be ex-

tremely important in geographically dispersed real-time systems. For example, a

power outage at a centralized control station may eliminate all network controlling

abilities, reverting the signals to a basic default plan. The same power outage, how-

ever, is unlikely to effect all controlling agents within a distributed system, leaving

some level of intelligent control intact. Agents in the immediate vicinity of any issue

could also infer inputs for any neighbours experiencing problems, allowing reasonably

intelligent control to be maintained. Also, if the problem is highly localized, the large

majority of controlling agents will maintain the same level of performance that would

be expected if no problems had occurred.



93

6.5.3 Local Computation and Communication

The local nature of the algorithm developed here is another possible implementation

advantage. With only neighbour-to-neighbour communication, the architecture of the

communications network used can remain quite simple, as intersection control agents

can be connected to their neighbours using any short-range communication technol-

ogy. In a centralized system which spans a large area, some of of these technologies

(e.g., short-range wireless communication) may not be feasible as they are unable to

send data the required distance.

Along with the distributed nature of the system, local communication increases

the robustness and reliability of the entire network control system. Using wired com-

munication (a common medium), a single break in the line may cut communication

to all agents beyond the break. With local communication, however, a single break in

the line can only affect communication between two agents, leaving all others unaware

of any problem.

6.6 Intersection Control Agent Update Loop

This section describes the update process each intersection performs after each time

step of a traffic simulation. During this update process, the agent may observe traffic,

calculate new signal plans or do nothing. Algorithm 5 details the steps taken by a

single intersection throughout the update process.

On the first line of the algorithm, the agent checks if the specified observation

interval has passed. If it has, old observations must be removed from the observation

list and new observations need to be made for each incoming edge (as can be seen

from the loop on line 2). Lines 5-11 are responsible for storing either the number of

vehicles, the number of vehicles per unit of length or the number of stopped vehicles

for each lane on the edge (depending on the value of the observed data parameter).

Data is stored for each lane (and not each edge) so turning lanes are able to maintain

their own volume measurements, as they form groups that are separate to that of the

rest of the edge. Once the stored traffic observations have been updated, the agent

may, if the specified number of steps between update intervals has passed, calculate



94

a new signal plan for implementation (lines 15-17). Details of the algorithm used are

included in Section 6.7.

Input: i - Intersection to be updated
1 if OI steps have passed since last observation then
2 foreach Incoming edge e in IEi do
3 foreach Lane l of e do
4 Remove observation with age older than WL from observation list
5 if OD = NV then
6 Add number of vehicles on l to observation list

7 else if OD = NVPL then

8 Add Number of vehicles on l
Length of l to observation list

9 else if OD = SV then
10 Add number of vehicles stopped on l to observation list

11 end

12 end

13 end

14 end
15 if UI steps have passed since last intersection update then
16 Update signal plan for i using Algorithm 6

17 end
Algorithm 5: Main update loop for an intersection control agent

6.7 Intersection Control Update Algorithm

The signal plans implemented at each intersection are created by the controlling agent

using Algorithm 6. Figure 6.2 presents a flowchart detailing the process of signal plan

calculation from available information. Red paths within Figure 6.2 represent infor-

mation that is not adapted by the control algorithm presented here, but could be

included in future extensions. Initially, traffic observations are generated from traffic

sensor data and information available from neighbouring intersections. These obser-

vations, along with road network information, are used to calculate traffic volume

measurements for all groups of the intersection. The traffic volume calculation is

shown in a different colour, as a number of different algorithms (presented in Sections

6.7.3-6.7.7) have been developed to calculate the volume from the available obser-

vations. Many other approaches to traffic control use learning algorithms based on



95

a fixed traffic network; these approaches, however, will suffer degraded performance

in the event of network changes such as lane closures. The controlling agents de-

tailed here, however, maintain a current view of the road network which could easily

be modified when network changes are made. Including this information allows the

controlling agents within the network to create more accurate models of the traffic

situation, leading to more effective control decisions/signal plans. The calculated

volumes are combined with the current cycle length to generate green lengths for

each group. While this work uses fixed cycle lengths (as described in Section 6.4),

adaptive cycle lengths could be generated, along with signal plans, based on available

information pertaining to traffic and neighbour state. These adaptive cycle lengths

could be used to improve intersection efficiency by increasing/decreasing the length

of the cycle based on traffic volumes. Once green lengths for each group have been

calculated, they are combined with an offset value to generate the signal plan, which

can then be passed to the traffic signal control devices. As with cycle lengths, the

offsets are not adapted by the control algorithm here, but future extensions to this

work could generate offset values in real-time based on traffic state and information

available about the road network and neighbouring intersections.

There are two main steps an agent must perform when creating a signal plan:

volume calculation and timing calculation. A detailed description of these steps, in

relation to the algorithm provided, is given in the following two sections.

6.7.1 Volume Calculation

Within Algorithm 6, lines 2-20 detail the steps taken to calculate a measurement

of current (or predicted) traffic volume for each of the intersection’s groups. To

begin calculating a group’s volume measurement, the agent first calculates a volume

measurement for each edge included in the group (lines 5-14). These edge volume

measurements are calculated as averages based on the number of lanes, to prevent a

bias toward edges with a higher number of lanes (this volume measurement can be

viewed as a saturation level for the entire edge). The actual volume calculation for

each lane can be performed in a number of ways, explained in Sections 6.7.3-6.7.7.

The volume measurement for each edge is stored in memory and also added to the



96

Figure 6.2: Flowchart detailing the process of signal plan calculation, with possible
dynamic extensions included in red

Tra�c Signals

Devices

Signal Plan

Generation

Green Length

Calculations

Tra�c Volume

Calculations

O!set

Road Network

Information
Tra�c Observations

Neighbour

Intersections

Cycle Length

Tra�c Sensor

Data

group’s total volume measurement. Once all edge volumes have been calculated, the

group volume measurement is divided (as with the lanes of each edge) by the number

of edges to prevent a bias toward groups with a larger number of edges. The agent

also keeps track of the total volume measured by all groups (line 20), which is used

later to calculate the proportion of the total intersection volume contributed by each

group.

As mentioned briefly in Section 6.4, the edge balance (EB) parameter can specify

how to calculate the final group volume. If the algorithm is set to balance the edges,

the algorithm will set the group’s volume to be that of the edge with the maximum

volume (instead of an average over all edges). This prevents congestion buildup on

an edge with higher volume than all other edges within its group, whereas averaging

over all edges may result in too little green time dedicated to the most congested

edge.



97

Input: i - The intersection to generate a plan for
1 Total Cars = 0
2 foreach Group g in Gi do
3 AvgCarsg = 0
4 Num Edges = 0
5 foreach Incoming edge e of IEi do
6 if e is part of the group g then
7 Edge Countsg,e = 0
8 Num Lanes = 0
9 foreach Lane l of e not in TL do

/* CalculateVolume using a method specified in Sections

6.7.3-6.7.7 */

10 Edge Countsg,e = Edge Countsg,e + CalculateV olume(l)
11 Num Lanes = Num Lanes+ 1

12 Num Edgesg = Num Edgesg + 1

13 Edge Countsg,e =
Edge Countsg,e
Num Lanes

14 Avg Carsg = Avg Carsg + Edge Countsg,e

15 Avg Carsg =
Avg Carsg

Num Edgesg

16 if EB = ME then
17 Avg Carsg = max(Edge Countsg)
18 else if EB = MESL and max(Edge Countsg) > 2×min(Edge Countsg) then
19 Avg Carsg = max(Edge Countsg)
20 Total Cars = Total Cars+Avg Carsg
21 Total Len = 0
22 foreach Group g in Gi do

23 Proportiong =
Avg Carsg
Total Cars

24 Timeg = round(Proportiong × CL)
25 if Timeg < MT then
26 Timeg = MT
27 Total Len = Total Len+ Timeg
28 while Total Len != CL do
29 if Total Len < CL then
30 Chose random group g and add 1 to Timeg
31 Total Len = Total Len+ 1

32 else
33 Chose random group g with Timeg > MT
34 Subtract 1 from Timeg
35 Total Len = Total Len− 1

36 Cur T ime = SelectOffset(i)
37 foreach Group g of i do
38 Green Switchi,g = Cur T ime
39 Cur T ime = Cur T ime+ Timeg

Algorithm 6: Green Length Calculation for a Single Intersection



98

6.7.2 Timing Calculation

Once volume measurements are available for each of the groups, a timing plan can be

generated which assigns phase lengths based on current traffic volumes (lines 21-35).

Using the volume measurement for each group, along with the total volume measured

for all groups, a proportion of total volume can be assigned to each group (line 23).

Multiplying this proportion by the total cycle length (line 24) assigns that proportion

of the cycle time to each of the groups. These times are also bounded such that each

group is given at least a minimum amount of green time each cycle (line 26).

With the rounding of times (since the agent is dealing with discrete time steps,

all times must be integer values), the sum of green lengths attributed to all groups

may not add exactly to the cycle length. For this reason, one second of green time is

randomly added or subtracted (based on whether the cycle length is shorter or longer

than the total time allocated) to a randomly selected group. This process is repeated

until the total length allocated equals the cycle length (lines 28-35).

Finally, the agent can assign switching times within the cycle for each group,

which specify the time at which the corresponding light phase should begin. Shown

in lines 36-39, this process begins by selecting the offset value for the intersection

(this is a preset value taken from the City of Ottawa’s signal plans, but could be

determined intelligently) and storing it as the current green switch time (line 36).

The agent then iterates over all groups, setting the current group’s green switch time

to the current green switch time and increasing the current green switch time by the

length of the group’s phase (lines 37-39). The agent can then immediately begin to

operate the intersection’s signals based on the newly calculated signal plan.

6.7.3 Simple Average (SA)

The initial method of calculating volume measurements from observations was a sim-

ple average over the entire time window. While this method is easy to implement, it

maintains no notion of time and thus cannot capture any temporal changes in traf-

fic flow. Algorithm 7 contains the steps used in calculating the volume using this

method.



99

1 Total = 0
2 foreach j from 1 to WL do

3 Total = Total +
Num V ehsl,j

WL

4 end
Algorithm 7: Volume calculation on a lane l using a simple average over the time
window

6.7.4 Time Sensitive Average (TS)

The time sensitive average (Algorithm 8) assigns decreasing weight to an observation

as the observation’s age increases. This weighting allows the volume calculation to

be time-sensitive over the window, with older observations still having effect even,

though the level of the effect is diminished.

1 Total = 0
2 foreach i from 1 to WL do

3 Total = Total +
Num V ehsl,i×i

WL

4 end
Algorithm 8: Volume calculation on a lane l using a time sensitive average over
the time window

6.7.5 Unbiased Time Sensitive Average (UTS)

After closer analysis, the time sensitive average method of volume calculation car-

ries with it a hidden bias. The observations made immediately previous to volume

calculation will measure volumes on some edges which are currently given a green

light, and some which are currently stopped by a red light. The vehicle counts on

the edges with a red light then, may be much higher than the average if the light has

stopped the flow for a significant period. Unfortunately, the time sensitive average

explained above would give these measures the most weight within the calculation.

The unbiased method, shown in Algorithm 9, associates the age of an observation

with the number of cycles that have passed since it was observed. This way, all mea-

surements within a single cycle will be weighted evenly, with observations from older

cycles carrying less weight than those from more recent cycles.



100

1 Total = 0

2 Cycles Kept = ⌊ WL
Cycle Length

⌋
3 foreach i from 1 to WL do
4 Cur Age = Cycles Kept− ⌊ i

Cycle Length
⌋ − 1

5 if Cur Age < 0 then
6 break
7 end

8 Total = Total +
Num V ehsl,i
22×Cur Age

9 end
Algorithm 9: Unbiased, time sensitive calculating of a lane’s volume over the time
window

6.7.6 Alpha-Beta Filter (AB)

Alpha-beta filtering (Wikipedia, 2011) is a simple method used to minimize the effects

of noisy measurements in situations where inconsistent data may be present. Alpha-

beta filters use two state variables, which signify the current position and velocity of

the measurement. Two additional system parameters are included within the system

when using the alpha-beta filter:

• Alpha (ALPHA): Determines the proportion of the error to include when cor-

recting the predicted position/value.

• Beta (BETA): Determines the proportion of the error to include when correcting

the predicted velocity/rate of change.

Although the terms used may suggest otherwise, the filter can be applied to any

system in which the first state (position) can be predicted based on the other state

(velocity). Used here for traffic volume measurement, the position of the system

represents the traffic volume measurement, while the velocity represents the rate of

change of that measurement. Including information regarding the rate of change can

allow for more accurate prediction of future traffic volumes, if the assumption that

the rate of change will remain constant over a short period of time holds true.

Algorithm 10 presents the steps taken in applying an alpha-beta filter to traffic

volume prediction. An update of the traffic prediction, using the specified algorithm,

is completed every time an intersection requires new traffic volume measurements



101

for signal plan calculation. The initial steps in using the alpha-beta filter (lines 1-4)

require a calculation of the observed traffic volume, which can be done using any

method of volume calculation (here using the method from Section 6.7.4). Once this

measurement has been calculated, the algorithm can compute an error amount (the

difference between the predicted volume and the measured volume) which is used to

modify the velocity and the predicted value (lines 5-7). From these new values, the

predicted velocity can be applied to the last prediction of traffic volume to create a

newly predicted volume measurement (line 8), which is constrained to values greater

than or equal to zero, as a volume less than zero is impossible.

/* All values used are initialized at the beginning of a

simulation */

1 Total = 0
/* Calculate the observed volume over the last interval */

2 foreach i from 1 to WL do

3 Total = Total +
Num V ehsl,i×i

WL

4 end
5 Error = Total − Last Predicted V alue
/* Update the predicted value and velocity to include error */

6 Last Predicted V alue = Last Predicted V alue+ (ALPHA× Error)
7 Last Predicted V el = Last Predicted V el + (BETA× Error)
/* Create prediction for the next interval */

8 Last Predicted V alue = Last Predicted V alue+ Last Predicted V el
9 Last Predicted V alue = max(Last Predicted V alue, 0)

10 return Last Predicted Value
Algorithm 10: Calculation of a lane’s volume using alpha-beta filtering

6.7.7 Neighbour Communicated Volumes (NCV )

The approaches to volume calculation specified in Sections 6.7.3-6.7.5 are purely reac-

tive methods of calculating traffic volume. This section proposes a new method which

uses current traffic volumes, along with neighbouring intersection’s estimations cal-

culated using any of the above specified methods, to predict traffic volumes over a

short period of time. This method requires a slight change to intersection control

agent behaviour: instead of maintaining vehicle counts for incoming edges, control

agents now maintain measures of how many vehicles exit the intersection onto each



102

lane over the time window. Using this information, the proportion of vehicles exiting

the neighbouring intersection onto each lane can be calculated (line 2). The total

number of vehicles on each incoming edge of the neighbouring intersection can then

be multiplied by the proportion expected to come to the lane, creating an estimate

of incoming traffic over a short-term period (lines 3-5). This prediction of incoming

traffic is then added to the current number of vehicles on the lane (line 6) to get a

short-term prediction of traffic volume.

1 Total = 0
2 Neighbour Prop = Proportion of vehicles leaving neighbour intersection and
entering this lane

3 foreach Incoming edge e of neighbour do
4 Total = Total +Number of vehicles on e×Neighbour Prop

5 end
6 Total = Total + Current number of vehicles on lane
Algorithm 11: Volume calculation for a lane using immediate observation and
data communicated from neighbouring intersections

6.8 Summary

This chapter has outlined an adaptive and distributed algorithm which can be used to

control real-world traffic. The chapter began by outlining the controlling agent model,

including a description of the information each agent requires to perform signal plan

updates (Section 6.3). Section 6.4 outlines the system parameters which determine

the overall behaviour of the agents within the system, while Section 6.5 discusses

the characteristics (distributed, adaptive and localized) which allow the algorithm to

effectively control traffic in a scalable, robust way. Sections 6.6 and 6.7 then provided

detailed explanations of the algorithms used for both traffic observation (Algorithm

5) and signal plan updating (Algorithm 6). Within Section 6.7, several algorithms

which can be used to calculate traffic volumes are also outlined.

With the definition of a realistic traffic model completed (see Chapter 5) and

the creation of an intelligent control algorithm presented here, the following chap-

ter presents an investigation into the abilities of the algorithm to effectively control

real-world traffic. This investigation includes results of optimization experiments for



103

the system parameters, as well as a comparison of the adaptive control approach’s

performance to that of a fixed signal control scheme.



Chapter 7

Experimental Results

7.1 Introduction

This chapter presents the experimental results generated through simulation of the

realistic traffic model developed in Chapter 5. The chapter’s first main goal is to

present the findings from several parameter optimization experiments, which aim

to find suitable values for the algorithm’s system parameters. With suitable values

selected, the adaptive control system outlined in Chapter 6 is used to control the

traffic, with the results being compared to those produced using a fixed control scheme

based on signal plans provided by the City of Ottawa. These results show that using

an adaptive approach can result in more effective network control, as the fixed control

scheme fails to handle unexpected traffic values effectively. Several examples are

also included, which document situations in which the fixed control scheme failed to

effectively control the traffic situation.

The entire chapter is outlined as follows. Initially, Section 7.2 explains the experi-

mental setup used to evaluate the presented algorithm. Sections 7.3-7.4 then presents

the findings of various experiments carried out to find suitable algorithm parameters.

These sections include the results of each investigation, as well as a discussion of

why these results were found in each case. Section 7.5 then presents a comparison

of the adaptive control approach to a fixed-phase signal controller. This includes a

description of the fixed plans, a comparison of the overall performance of both con-

trol approaches (Section 7.5.1) and example scenarios showing the failure of the fixed

controller (Section 7.5.2).

104



105

7.2 Experimental Setup

Due to the stochastic nature of traffic control, a number of traffic scenarios had to

be considered to make any meaningful conclusions. In all, fifteen (the number was

chosen to balance the computation time requirements and the need for repetition)

sets of vehicle routes were generated using the process outlined in Section 5.4.4. Each

of these vehicle route scenarios were simulated for each control measure presented in

this section and the results presented throughout this chapter are averages over all

fifteen of these scenarios. Each scenario consisted of 39 600 time steps (each of which

simulates one second), for a total of 11 hours of simulated time. Details on how the

scenarios were generated from the available data is provided in Section 5.4.4, while

the actual route specification files for use in SUMO are available on-line (McKenney,

2011).

Observations regarding traffic state were made at regular intervals (every 5 time

steps, in general) and saved in output files for each simulation run. The observed

information included the number of vehicles and average vehicle speed for street

segments, entire streets and the entire simulation. This data was then parsed and

compiled into the results included within this chapter and also in Appendix A.

7.3 Parameter Sensitivity Analysis

There are a number of parameters within the presented control algorithm which can

affect the overall performance of the control system (for a detailed explanation of

the parameters, see Section 6.4). The complex nature of the traffic control system

proposed, however, makes it difficult to predict the various relationships between

variables. Through simulation, however, the effectiveness of various values of each

parameter can be examined. It would be computationally impractical, given the

available hardware and sequential nature of current traffic simulation software, to

simulate all scenarios for each possible combination of parameter values (a total of

118 125 simulation runs of approximately 1 hour each would be required to evaluate

all combinations of the values used here). For this reason, the various values of each

parameter were compared while suitable values for all other parameters were held



106

Table 7.1: Window Length Simulation Parameters
Window Length (WL) 60, 120, 300, 600, 900, 1800, 3600
Update Interval (UI) 120
Volume Calculation Method (VCM) Unbiased Average
Observed Data (OD) Number of Vehicles on Edge
Observation Interval (OI) 10 Steps
Edge Balance (EB) Maximum Edge

constant, resulting in a total of 420 simulated scenarios. The following sections include

results generated through the investigation of varying values for these important

system parameters.

7.3.1 Window Length

The first important parameter to be investigated was the window length, which de-

termines the length of time traffic observations are stored. In total, seven different

window lengths were investigated, ranging from 60 steps (one minute) to 3600 steps

(one hour). A list of all window lengths evaluated, as well as the other parameters

used for each simulation is shown in Table 7.1.

After simulating the 15 scenarios for each of the window lengths, the average speed

over the entire simulation was produced for each window length value. These averages,

along with 1 standard deviation error bars, are presented in Figure 7.1. Using a paired

two-tail T-test (α = 0.05) it was found that all window length combinations but one

(900/3600) resulted in statistically significant differences in average simulation speed.

From Figure 7.1, however, it can be seen that the window length of 60 is the only

value which resulted in a large performance decrease. Using a short time window

(such as 60 seconds) forces the controlling agent to make decisions based on a smaller

amount of information. This information, however, can be misleading in that it may

represent only the most recent traffic flow, and not the overall traffic flow during the

current time interval. Using a larger time window allows the algorithm to create a

better view of the underlying traffic model. Due to the temporally sensitive nature

of the volume calculation, the most recent observations (e.g., the last 60 seconds) are

still weighted heavily using a longer window, but older observations also factor into

the calculated volume measurement. This allows the algorithm to better match the



107

actual traffic distribution, resulting in more effective signal plans and an increase in

vehicle speed. From these results, then, it would be advisable to use a longer window

length, with values ranging from 900-3600 steps being the most favourable choices.

While there are cases (e.g., 900 and 1800/3600, or 300 and 600) where a shorter time

window results in higher average speeds than a longer window, the speed differential

in these cases is quite small.

Figure 7.1: Summary of window length parameter investigations showing average
speed attained with 1 SD error bars

18 19 20 21 22 23 24 25

3600

1800

900

600

300

120

60

Average Speed (km/h)

W
in

d
o

w
 L

e
n

g
th

Average Speed Produced Using Various Window 

Lengths

7.3.2 Observation Interval

The observation interval parameter determines how often vehicle volume measure-

ments are made. This parameter is important as it determines the amount of in-

formation that must be communicated within the control system. For example, if

observations must be made every 0.1 seconds, the observations must be communi-

cated at the same frequency to any interested agents, which can require an expensive

and sophisticated communication network. Five values for the observation interval

(1, 2, 5, 10 and 25 timesteps) were investigated using the parameters listed in Table

7.2.



108

Table 7.2: Observation Interval Simulation Parameters
Observation Interval (OI) 1, 2, 5, 10, 25
Window Length (WL) 900
Update Interval (UI) 120
Volume Calculation Method (VCM) Unbiased Average
Observed Data (OD) Number of Vehicles on Edge
Edge Balance (EB) Maximum Edge

Figure 7.2 shows the average simulation speed realized using the 5 parameter

values investigated. Overall simulation speed is extremely similar when using obser-

vation intervals of 10 seconds or less, but begins to drop significantly when using an

observation interval of 25 seconds. As with the window length evaluation above, a

paired two-tail T-test (α = 0.05) was used to test for a statistically significant differ-

ence between the different observation intervals. From these tests, it was found that

there was no significant difference between any of the observation intervals from 1-10

seconds. The same tests, however, showed that using an observation interval of 25

seconds produced results that were significantly different from all of the other values

tested. It is concluded then, that frequent measurement is required to infer an ac-

curate traffic model; however, the system is capable of operating with measurements

taken at 10 second intervals. The significant decay in performance when using an

update interval of 25 seconds can be easily explained by analyzing a few properties

of the road network and simulated traffic. The average edge length within the sim-

ulation is approximately 125m, while average simulation vehicle speeds can typically

be around 25km/h (or approximately 7m/s). Considering these values, vehicles will

traverse edges in an average of less than 20 seconds, which means the presence of

these vehicles on edges they travel will often not be measured at all when using an

update interval of 25 seconds. As with very small window lengths, this results in an

inaccurate view of network state and poor controller performance.

When considering implementation, an estimate of the worst-case amount of data

that must be communicated by an intersection within the modelled network can eas-

ily be generated. First, each observation for a single lane would require both a lane

identifier and a vehicle count. Assuming both of these values can be represented as

integers with a size of 4 bytes each, this would be a total of 8 bytes per lane per



109

Figure 7.2: Summary of observation interval parameter investigations showing average
speed attained with 1 SD error bars

23.6 23.7 23.8 23.9 24 24.1 24.2 24.3 24.4 24.5 24.6

25

10

5

2

1

Average Speed (km/h)

O
b

se
rv

a
!

o
n

 R
a

te
 (

T
im

e
st

e
p

s)

Average Simula!on Speed Using Various Observa!on 

Rates

observation. From the modelled network, the highest number of lanes on a single

edge is 4, while the highest number of outgoing edges (which require observation

communication) is also 4. This results in a total communication of 8 × 4 × 4 = 128

bytes (or 1Kib) sent at each observation interval, which is feasible using a simple

low-bandwidth communication framework. Also, in the current implementation, all

observations are sent at the same time which would require this maximum amount

of bandwidth at a single time. Observation updates could be staggered, improving

the balance of work and decreasing the demand on the communication network (as-

suming a 10 second observation interval, each intersection would require a maximum

bandwidth of 0.1Kib/s).

A further implementation of this algorithm could have intersection control agents

which adaptively determine the optimal update interval based on current traffic con-

ditions. Agents could then find a balance between two objectives: minimizing the

bandwidth used in communicating observations and maximizing the performance of

traffic signals within the network.



110

Table 7.3: Observed Data Simulation Parameters

Observed Data (OD)
Number of Vehicles on Edge
Stopped Vehicles on Edge

Number of Vehicles per Unit Length
Window Length (WL) 900
Update Interval (UI) 120
Volume Calculation Method (VCM) Unbiased Average
Observation Interval (OI) 10 Steps
Edge Balance (EB) Maximum Edge

7.3.3 Observed Data

The Observed Data parameter specifies which measurement of volume should be used:

total vehicles on an edge, number of vehicles on an edge per unit of length or number

of stopped vehicles on an edge. To evaluate the performance of the control algorithm

while observing these different measurements, each of the 15 vehicle route scenarios

were simulated with the parameters found in Table 7.3.

Figure 7.3 charts the performance difference found using the three types of ob-

served data. It is obvious that using the number of stopped vehicles on an edge results

in significantly slower average speeds than when using either of the other methods.

Measuring only the stopped vehicles fails to measure the actual traffic volume, which

relies on the number of approaching vehicles as well as the number of stopped vehicles.

The performance decay seen when measuring only stopped vehicles would be most

obvious in a situation where the intersection offset allows green waves to form in the

dominant traffic direction. In this case, there very well may be 3 vehicles stopped in

a direction with a small traffic volume, while no vehicles are stopped in the direction

with a large vehicle volume due to successful offsetting. Devoting a larger proportion

of time to the smaller traffic flow would not be wise, even though it may temporarily

address the difference in stopped vehicles. While counting the total number of vehi-

cles and the number of vehicles relative to the length of the edge have similar overall

results, factoring edge length into the observation allows for a closer representation

of congestion. For this reason, measuring the number of vehicles relative to the edge

length resulted in a statistically significant increase in average simulation speed.

These results are advantageous from an implementation point of view, as vehicle



111

counts (which can be obtained by comparing sensor data from the beginning and end

of a road section) are more readily available than information such as the number of

vehicles currently stopped at an intersection.

Another possibility, which was not investigated here, is to use a linear combination

of a number of the possible observations. This type of approach could use both the

number of stopped vehicles and the number of vehicles approaching the intersection

to infer a more accurate model of the current traffic situation. This improved model

could possibly allow for improved controller agent performance. This investigation is

left as future work.

Figure 7.3: Summary of observed data parameter investigations showing average
speed attained with 1 SD error bars

19 20 21 22 23 24 25

Stopped Vehicles

Veh/Length

Total Vehicles

Average Speed (km/h)

Average Simula!on Speed for Three Vehicle 

Observa!on Methods

7.3.4 Edge Balancing

As mentioned in Section 6.4, there may be cases in which a single edge within a group

has a much higher volume than the average volume of the group. In this case, it may

be beneficial to change the group’s average to instead be the volume calculated for

that specific edge. To test this hypothesis, three sets of simulations were performed:

averaging all edges within a group, setting the group average to that of the highest



112

Table 7.4: Edge Balance Simulation Parameters

Edge Balance (EB)
Avg. All Edges, Max Edge if Significant

Difference, Maximum Edge Always
Window Length (WL) 900
Update Interval (UI) 120
Volume Calculation Method (VCM) Unbiased Average
Observed Data (OD) Number of Vehicles on Edge
Observation Interval (OI) 10 Steps

edge volume if the highest edge volume is significantly (2 times) larger than the

smallest edge volume and setting the group average to that of the highest edge value

every time. A summary of all other parameters (which remained constant) is given

in Table 7.4.

Figure 7.4 shows the average speeds attained over the 15 traffic simulations for each

of the three edge balancing techniques investigated. While it can be seen that all three

techniques performed similarly, with a maximum difference in average simulation

speed of slightly more than 1 km/h, there was also a statistically significant difference

between all three approaches (using a paired two-tailed T-test). It can also be seen

from the figure that selecting the maximum edge only if it is much larger than the

least edge volume results in a lower average speed than averaging all edges (with

a decrease in speed of approximately 1.9%). Calculating a group’s volume based on

that group’s highest edge volume on the other hand, resulted in an increase of slightly

over 3%. This increase in average speed shows that there is a small advantage in

placing priority on a busy edge within a group, instead of averaging all edges within

a group equally. While the difference is small, this type of balancing will only have

a noticeable effect in cases where the edges of a group have widely differing traffic

volumes. No investigation was preformed to analyze the average edge difference within

this model, but the effect of balancing should increase if the algorithm was applied

in an environment where the edge difference within groups is significant on a regular

basis.



113

Figure 7.4: Summary of edge balancing parameter evaluations showing average speed
attained with 1 SD error bars

22.5 23 23.5 24 24.5 25

Max Edge Always

Max Edge if Volume

Significantly Different

Avg. All Edges

Average Speed (km/h)

Average Speed Produced Using Different Edge 

Balancing Techniques

Table 7.5: Update Interval Simulation Parameters
Update Interval (UI) 120, 300, 600, 1200, Every Cycle
Observed Data (OD) Number of Vehicles on Edge
Window Length (WL) 900
Volume Calculation Method (VCM) Unbiased Average
Observation Interval (OI) 10 Steps
Edge Balance (EB) Maximum Edge

7.3.5 Update Interval

The update interval parameter determines how often each intersection should calcu-

late a new signal plan. This section presents an investigation into the effects this

parameter may have on the overall performance of the control algorithm. A total of

five different update interval values were compared through simulation, with the first

four updating each intersection every 120, 300, 600 and 1200 timesteps respectively.

The fifth parameter value required each agent to update its own signal plan at the

beginning of each cycle (as the first phase begins). Table 7.5 lists the parameters

used within the control algorithm when investigating these 5 values.



114

Figure 7.5 presents the average simulation speed attained using the various pa-

rameters evaluated. It can be seen from the first four values (120, 300, 600 and 1200)

that there is obvious performance decay when increasing the time between signal plan

updates. The final value, where agents update their plans at the beginning of each

cycle, achieved an average speed even higher than the fixed values evaluated (slightly

over 0.5km/h faster than an update interval of 120s). This advantage, however, may

occur because a large number of cycle lengths within the City of Ottawa signal plans

happen to be less than 120s. One conclusion that can be drawn from these results

is that there is an obvious performance advantage when updating signal plans fre-

quently. In fact, it was found that each update interval resulted in a statistically

significant increase in average speed over the next highest update time (as with all

previous parameter investigations, this hypothesis was tested with a paired two-tailed

T-test). When waiting a prolonged period (10 minutes or greater) between signal plan

updates, the observations used to generate the signal plan in use become invalid and

traffic flows are no longer served effectively. With the update interval and overall

performance having a seemingly inverse relationship, it may then be advantageous to

instead eliminate the cycle altogether and implement a system which is capable of

selecting from any available phase at any time. More discussion on this idea will be

presented in Section 8.2.1.

7.3.6 Volume Calculation Method

This work has developed a number of ways in which traffic volume calculations can be

made (outlined in Sections 6.7.3-6.7.7). This section includes an analysis of the overall

control system performance when using these different methods. Table 7.6 details the

parameters used when simulating the five different volume calculation methods. It

should be noted that the alpha-beta filter method uses an alpha value of 0.55 and a

beta value of 0.20. Details on how these parameters were chosen is given in Section

7.4.

A summary of the average simulation speed attained using each volume calculation

method is presented in Figure 7.6. It can be seen within this figure that all volume

calculation methods performed reasonably well, with less than 2km/h separating the



115

Figure 7.5: Summary of update interval parameter evaluations showing average speed
attained with 1 SD error bars

9 11 13 15 17 19 21 23 25

Every Cycle

1200

600

300

120

Average Speed (km/h)

Average Speed Using Different Signal Plan Update 

Intervals

best and worst average speed. Surprisingly, the method designed to avoid a bias

toward the most recently stopped traffic flow performed worse than all of the other

methods implemented. These results seem to imply that it may be beneficial to bias

a signal plan toward the traffic flow that has been waiting at the time of signal plan

calculation, as the other two reactive methods (simple average and time sensitive

average) perform significantly better. It is interesting to note that volume calculation

enabled through neighbour communication performs nearly as well as the method

with the highest average speed. As can be seen in Section 6.7.7, the neighbour

communicated volume predicts future volumes based on three pieces of information:

• The current number of vehicles on incoming edges.

• The current number of vehicles on incoming edges of neighbouring intersections.

• The estimated proportion of vehicles that enter the intersection’s incoming edges

from each incoming edge of each neighbour.

As proposed, this method only takes into account information regarding entire edges.



116

Table 7.6: Volume Calculation Method Simulation Parameters
Volume Calculation Simple Average (6.7.3)
Method (VCM) Time Sensitive Average (6.7.4)

Unbiased Time Sensitive Average (6.7.5)
Alpha-Beta Filter (6.7.6)

Neighbour Communicated (6.7.7)
Update Interval (UI) 120
Observed Data (OD) Number of Vehicles on Edge
Window Length (WL) 900
Observation Interval (OI) 10 Steps
Edge Balance (EB) Maximum Edge

The calculation could be improved by taking into account available information per-

taining to inter-lane connections. For example, all vehicles within a left turning lane

must end up on the same edge, as they are unable to travel in any other direction. This

method could then increase its predictive ability, which should lead to performance

gains.

The highest average speed was attained using an alpha-beta filter to predict the

future volumes based on previous measurements. This is an important result as it

shows the need to not only create an estimate of current traffic volume, but to also

consider the rate at which the traffic volume is changing.

7.4 Alpha-Beta Sensitivity Analysis

The alpha-beta filter requires the specification of both the alpha and beta parameter

values. These values generally range from 0.0 to 1.0 and can greatly affect the overall

prediction accuracy of the filter. By varying the two parameters within the simula-

tion environment, a landscape can be generated which shows the overall effectiveness

of the different parameter values. Figure 7.7 presents this landscape, showing aver-

age simulation speed for alpha and beta combinations ranging from 0.0-1.0 (in 0.05

increments).

From Figure 7.7, it can be seen that a wide range of alpha and beta values produce

similar results. In fact, favourable results are produced in all cases where the alpha

parameter’s value is greater than 0.15. Response to change is typically realized more



117

Figure 7.6: Summary of average speed (with 1 SD error bars) attained using various
volume calculation methods

24 24.5 25 25.5 26 26.5

Neighbour Comm.

Alpha-Beta Filter

(Alpha = 0.55, Beta = 0.2)

Unbiased

Time Sensi!ve Average

Simple Average

Average Speed (km/h)

Average Speed Using Various Volume Calcula!on 

Methods

quickly when higher alpha and beta values are used. The fact that the best results are

realized with higher alpha values once again shows that timely response to change is

important in the traffic domain. After considering all evaluations, the highest average

speed was attained using an alpha value of 0.55 and a beta value of 0.20. This result

is used in Section 7.3.6 for comparison to other volume calculation methods.

7.5 Fixed City Plans vs. Adaptive Control

The most significant contribution of this work is the performance comparison of a

simple, adaptive and distributed control system to that of fixed signal plans in traffic

scenarios similar to those found in the real world. To investigate the performance

differences, a set of fixed signal plans based on data supplied by the City of Ottawa

was used. Each intersection is associated with a set of signal plans, along with a

schedule specifying which signal plan to implement during different times throughout

the day. Each signal plan within this set specifies the phase length for each phase

at the intersection, as well as an offset value which determines when the first phase

should begin. Table 7.7 shows an example signal plan for a single intersection, while



118

Figure 7.7: Average speed attained using various alpha/beta combinations

an example signal plan schedule is included in Table 7.8. The remainder of this

section summarizes the performance of these fixed plans in comparison to that of the

adaptive control approach presented within this work.

In selecting parameters to evaluate the adaptive control system, it would make

sense to choose each parameter value based on the value that achieved the highest

average speed through simulation in Section 7.3. It was found, however, that param-

eter values used in a previous experimental investigation resulted in better overall

performance than when using this method. For this reason, the results presented

Table 7.7: Example signal plans for an intersection
Plan AM Peak Off Peak PM Peak Night Weekend PM Rush
Cycle 60 55 55 55 55 55
Offset 44 23 22 36 22 22

EW Thru 25 29 30 25 25 28
NS Thru 35 26 25 30 30 27



119

Table 7.8: Example weekday signal plan schedule for an intersection
Time 0:15 7:00 9:30 15:00 18:00 22:30
Plan Night AM Peak Off Peak PM Peak PM Rush Night

Table 7.9: System parameter values used when comparing to fixed signal plans
Volume Calculation Method (VCM) Time Sensitive Average
Update Interval (UI) 120
Observed Data (OD) Number of Vehicles on Edge
Window Length (WL) 3600
Observation Interval (OI) 10 Steps
Edge Balance (EB) Maximum Edge

here use the parameter values found in Table 7.9.

7.5.1 Average Simulation Speed Comparison

Figure 7.8 presents a comparison of the average simulation speeds observed when

using both the fixed City signal plans and adaptive signal plans. The measurements

presented are aggregated over 15 minute intervals to present an average vehicle speed

over each of the intervals. In the majority of the intervals within Figure 7.8, the use

of adaptive signal plans results in increased average vehicle speed.

While it is easy to see from Figure 7.8 that adaptive control has a performance

advantage over fixed signal plans, it is difficult to quantitatively compare the two using

the provided data. Figure 7.9 presents a much more quantitative comparison, showing

the overall percentage increase in vehicle speed for several time frames when using

adaptive signal control. Using the approach described within this work, an increase in

average speed of 6.59% is achieved over the entire simulated interval (7a.m.-6p.m.).

Using the parameters specified here, however, an entire hour will be required to

initialize the time window observations used to compute signal plans. If this first hour,

in which the controlling agents are not able to infer an accurate traffic model, is not

included within the calculation, the percentage increase in speed increases to 7.37%.

The histogram presented in Figure 7.10 further quantifies the results from Figure

7.8, showing the number of 15 minute intervals which attained various percentage

increases in speed. Figure 7.10 shows that only 2 intervals (of 44 in total) resulted in



120

Figure 7.8: Aggregated average simulation speed over 15 minute intervals for both
fixed and adaptive lights

a lower speed when using the adaptive control system. It should once again be noted

that one of these intervals was the initial 15 minutes of simulation, when the agents

would not have enough information to accurately identify traffic volumes.

7.5.2 Examples of Fixed Signal Plan Failure

The largest problem found when using fixed signal plans arises when the actual traffic

volume varies significantly from the expected traffic volume. This section presents

several examples where the fixed signal plans failed to operate effectively during simu-

lation. The performance of the fixed signal plans within these situations is compared

to that of the adaptive control system to further show the advantage of adaptive

traffic signal control.



121

Figure 7.9: Average increase in speed when using adaptive signal control

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

PM Peak (3:00-6:00)

Midday (9:30-3:00)

AM Peak (8:00-9:30)

AM Peak (7:00-9:30)

Overall (8:00-6:00)

Overall (7:00-6:00)

Average Speed Increase 

Average Speed Increase (%)

Figure 7.10: Distribution showing number of intervals with certain speed increases

The first example of fixed signal plan failure is presented in Figure 7.11. This figure

shows the aggregated average vehicles (Figure 7.12(a)) and speed (Figure 7.12(b))



122

for a single road section within the simulation using both fixed and adaptive signal

schemes. Between the times of 8a.m. and 10a.m., it is obvious from Figure 7.12(a)

that there is an unexpected traffic volume which is not handled effectively by the fixed

signal plans. The fixed plans fail to adapt to this unexpected volume, causing the

total number of vehicles on the road segment to continually increase for a period of

time, peaking at nearly 60 vehicles. The adaptive traffic signals, however, detect this

unexpected volume and devote more signal time to the required phase, maintaining

a much lower number of vehicles. The increase in vehicles when using the fixed

signal plans results in a much slower average speed on the same road segment, as is

evident in Figure 7.12(b). Once again, since the number of vehicles does not increase

significantly when using adaptive signals, the speed on the road segment remains at

approximately the same level throughout the interval.

Another example, similar to the one above, is provided in Figure 7.12, this time

showing average speed and number of vehicles for an entire street (16 road segments).

In this example, the fixed signal plans produce very similar results to the adaptive

signal control until the evening rush period (5p.m.). At this point, the increase in

volume is not handled effectively by the fixed control scheme, causing the average

number of vehicles on the street to increase significantly. In this case, the adaptive

signal plans also experience an increased number of vehicles, but the increase is much

smaller than that found using a fixed signal plan. As in the previous example, the

increased number of vehicles results in a decrease in average vehicle speed, as shown in

Figure 7.13(b). Similar to the number of vehicles, both control approaches experience

a drop in average vehicle speed. The adaptive lights, however, maintain a higher

average speed and also recover to the original speed faster than the fixed controller.

Appendix A presents several more examples which further demonstrate the problems

that may arise while using a fixed-time signal control approach.

7.6 Summary

This chapter presented the results generated while investigating the properties of the

control algorithm presented in Chapter 6. The first experiments carried out (Section

7.3) investigated the effects of various values for all of the algorithm’s important



123

system parameters. Using a set of parameters that performed well, the algorithm’s

performance was compared to that of a fixed signal control schedule (Section 7.5).

The fixed signal scheme itself was based on the signal plans used to control the

area modelled by the City of Ottawa (an example plan can be found in Tables 7.7

and 7.8). Section 7.5.1 presented a comparison between fixed and adaptive control

clearly showing that the adaptive approach was more versatile, robust and effective

when controlling the signals within the traffic network (see Figures 7.8, 7.9 and 7.10).

Finally, the chapter presented several specific examples, showing the problems that

may arise when using a fixed control scheme in Section 7.5.2.



124

Figure 7.11: Aggregate average number of vehicles and speed on a single section of
road using fixed and adaptive signal plans

(a) Average vehicles on the road segment.

(b) Average vehicle speed on the road segment.



125

Figure 7.12: Aggregate average number of vehicles and speed for an entire street using
fixed and adaptive signal plans

(a) Average vehicles on the street through the simulation.

(b) Average vehicle speed on the street.



Chapter 8

Conclusions and Future Work

This thesis is motivated by the need for increased investigation into intelligent con-

trol within vehicular traffic networks. As traffic volumes in major cities around the

world continue to increase, the application of technological advancements in the area

of traffic control will become more important. Through a review of the available

intelligent traffic control research, several weak points have been identified. First,

many control algorithms that have been proposed have been evaluated on very small

and simplistic traffic networks, leaving their real-world applicability unclear. Also,

many of the works presented perform investigations using simple or completely static

traffic distributions. While it is acceptable to show that a control approach is capa-

ble of dealing with these types of scenarios, evaluating control systems using traffic

distributions defined from real-world data is required in the future to show that these

approaches are truly useful.

This thesis has addressed the above limitations as described in the contributions

described in the following section.

8.1 Summary of Key Contributions

8.1.1 Review of Previous Intelligent Traffic Signal Control Work

Chapter 3 presented a review of the previous work completed in the area of intelligent

traffic signal control. This included discussion of numerous approaches that have been

applied in the traffic control domain, as well as a summary of the advantages and

disadvantages inherent in the use of each approach. Using the identified advantages,

a number of important characteristics for a real-time intelligent signal control system

were outlined including adaptability, applicability to real-world scenarios, distribution

of computation and reliance on locally available data.

126



127

8.1.2 Real-World Traffic Model

Within Chapter 5, a traffic model was developed within a realistic microscopic traffic

simulator. Both the traffic network and vehicle volumes within that network were

created using measurements taken from a real traffic network within Ottawa, Ontario.

Not only is this traffic model used to evaluate the effectiveness of the algorithms

developed within this thesis, but it can also be used in the future to investigate the

performance of other control approaches. The process of model creation was also

detailed within the same chapter, allowing others to develop further models more

efficiently.

8.1.3 Algorithm Development and Experimentation

This thesis (Chapters 4 and 6 specifically) proposed a traffic control algorithm that

had several important characteristics. First, the controlling agents make decisions

based on current traffic volumes, allowing them to adapt signal plans within the net-

work to efficiently control traffic flows. Second, the algorithm relies only on locally

available information which adds robustness not seen in centralized control architec-

tures. This local communication also requires a very small amount of bandwidth,

allowing an implementation to use an inexpensive and simple communication infras-

tructure. This reliance on local information also allows the control system described

here to scale to very large networks, which is yet another advantage over many of the

previously developed control systems. The proposed control system also relies on a

set of parameters which determine the overall functionality of the controlling agents

and can be optimized to maximize system performance. While these parameters have

been optimized for this specific use case, they could be further optimized in any other

traffic environment, allowing the control system to be applied successfully in many

locations with minimal intervention. Finally, the algorithm makes very few techno-

logical assumptions (e.g., there is no reliance on intelligent driver models) and has

been evaluated within a simulation environment which modeled a real-world traffic

network.

The algorithm outlined in Chapter 6 also relied on one of a number of possible

volume calculation methods (outlined in Sections 6.7.3-6.7.7). These methods ranged



128

from purely reactive calculations to predictive methods which analyze the rate of

change of volume measurements.

Chapter 6 experimented with the final algorithm, analyzing the control perfor-

mance using a wide range of parameter values. After optimizing the parameters for

this particular traffic network, the adaptive control system’s performance was com-

pared to that of a fixed control scheme based on signal plans made available by the

City of Ottawa. It was shown that the adaptive algorithm controlled traffic within

the network more efficiently than the fixed timing plans. The difference in perfor-

mance was shown to be caused by an inability of the fixed traffic plans to address

unexpected vehicle flows within the network. This conclusion further affirmed the

need for real-time adaptive control within congested traffic networks.

8.2 Future Work

8.2.1 Intelligent Signal Control

There are several future directions for intelligent traffic signal control, involving both

the algorithm presented here and other possible approaches. The algorithm presented

should, in the future, be applied to a different traffic network than the one included

within this thesis (one possible candidate is the traffic scenario generated for a section

of the Greater Toronto Area MATSIM - Toronto (2011)). This type of work could

investigate the effectiveness of the parameters, which have been optimized specifically

using the network presented here, to efficiently control traffic elsewhere. Completing

an investigation such as this would provide insight into the global applicability of

the parameters, showing whether they are effective in more than one scenario or if

they must be optimized in every application. Furthermore, evaluating the proposed

algorithm on various other networks will demonstrate whether the adaptive approach

is truly applicable in a number of traffic situations and not just the one used here.

Another extension, that may be applied to the presented algorithm or another

control system, is the dynamic generation of cycle lengths and signal offsets. These

two values have been shown to have a drastic effect on the overall performance of a

signal plan, but no work on their real-time optimization has been completed here.



129

While the optimization of cycle length may be straightforward, choosing an offset

value in a real-world traffic situation can be difficult. Much of this difficulty arises

from the need to choose a single flow to offset with from a number of flows present

at each neighbour. Questions also arise when deciding if an offset value should be

set to maximize coordination with a single flow, or if an offset should be balanced to

coordinate, to a certain degree, with a number of flows.

Another area of research involving intelligent signal control is the cooperation/

coordination between intersections within a network. While offset generation is an

important part of coordination, controlling agents could also control phase and cycle

lengths in a cooperative manner to avoid supersaturation at any one point within the

network.

Finally, intelligent signal control may move away from a cycle-centric approach,

with pre-calculated cycle lengths and phase orders. Instead, controlling agents at

each intersection could decide at any given time which phase should be implemented,

based on the current traffic situation. This allows control at an intersection to become

even more dynamic, with phases that are unneeded at the time (such as advanced

turning situations) being skipped completely.

8.2.2 Traffic Simulation and Modelling

Traffic modelling and simulation software also need to evolve continuously to enable

traffic researchers to work efficiently and effectively. One future research area that

promises to greatly increase efficiency is the parallelization of traffic simulation. While

many of the traffic simulators available today are ’fast’, they are often programmed

for sequential execution. At the same time, there are a wide range of powerful par-

allelization approaches readily available that can greatly increase the speed at which

simulations execute (e.g., multi-core computers, clusters, graphics processing units).

In fact, GPU (graphics processing unit) computing (Owens et al., 2008) may be a

particularly promising choice for traffic simulation, as the GPU devices are designed

to be used in situations where the same operation must be executed a large number

of times with different data (e.g., all vehicles in a network require their state to be

updated). Using a single GPU device can allow program execution speeds that are



130

hundreds of times faster than a single computer, at a cost which is generally a fraction

of the price of a desktop PC. This increase in execution speed would allow researches

to generate results faster and investigate control systems more thoroughly.

In the future, microscopic traffic simulation may also move away from the car-

following models used today (which were originally designed for single lane modelling)

and begin to focus on autonomously controlled vehicles which are not bound in the

same ways as vehicles using a car-following model (e.g., they do not have to be in

a specific lane at any time, but instead can be between two lanes during a lane

change). This approach would allow simulations to become more realistic and also

help to further develop intelligent vehicle control algorithms.

Considering the amount of work required to develop the traffic model used within

this thesis, automation of model creation would also be an area which could improve

intelligent traffic systems research overall. This, of course, will involve cooperation

between traffic researchers and traffic authorities in the development of systems which

can transform the available traffic data (whether it is from sensors within the net-

work or actual vehicle counts performed by employees) into a simulation-ready traffic

model. It would also be beneficial if this work developed a standard for represen-

tation of traffic models, allowing the production of tools to convert the available

model for use in any of the available simulation packages. With this standardization,

a database of real-world traffic scenarios can be built and shared within the traffic

research community. This type of database would allow traffic researchers to easily

evaluate the performance of control strategies on a number of the publicly available

datasets, enabling them to gain insight into the overall effectiveness of their control

system. Several of these databases exist for other types of problems, such as the

travelling salesman problem (TSPLIB, 2011) and pattern recognition (UCI Machine

Learning Repository, 2011). Cooperation between researchers and traffic authorities

could also lead to the implementation of a real-time model generation system. Using

the data available from existing sensor networks within many urban environments,

along with the communication infrastructure already in use by several traffic author-

ities, traffic models could be inferred which represent the current traffic state within

the network. These models could be used to evaluate real-time traffic control systems



131

in development and could also be stored for later investigation of future systems.

Another future research area involves the inclusion of pedestrians within traffic

models, as signal plans are often influenced by pedestrians within urban environments.

While some work has already been completed in this area (Helbing et al. (2005)), little

work has completed in the domain of intelligent traffic control. Future work will strive

to include pedestrian flows within the realistic urban traffic models so the relationship

between pedestrians and vehicles can be further investigated.

8.2.3 Intelligent Traffic Systems

While the efficiency of intersection control is an important determining factor in

overall network performance, there is another part of the system that requires in-

telligent control: the drivers. Within a city, there are thousands (or hundreds of

thousands) of drivers moving through the network during the day. These drivers

are all making naive decisions as they are completely unaware of the traffic state

anywhere except where they currently are. A large area of future research will in-

volve providing useful information to the drivers (allowing them to make informed

decisions) and also influencing the actual behaviour of drivers to improve network

efficiency. This can be done by enabling both vehicle-to-network communication, in

which information can be exchanged between vehicles and control devices within the

network, and vehicle-to-vehicle communication, in which vehicles can share available

information with each other. Passing data in such a way could allow drivers to be

presented with an overall view of the current network state, allowing them to make

informed decisions. Vehicle-to-network communication could also improve the way

in which intelligent signal control functions within the network. First, vehicles could

communicate directly with intersection controlling agents, eliminating the need for

complex sensor networks. Also, vehicles can act as messengers which bring infor-

mation from neighbouring intersections, eliminating the need for an interconnected

intersection communication network. This, of course could make the system even

more robust, as it is extremely unlikely that all vehicles would lose a message which

would be lost if the communication link between intersections was broken in a more

traditional communication approach.



132

Within the area of driver influence, dynamic vehicle routing is a particularly in-

teresting area in which driver behaviour can be modified to decrease the average trip

time within the network. While global positioning systems (GPS) can provide routes

for drivers, these routes are typically generated using only the distance of the trip.

An improved system could include real-time (or even predicted) traffic volumes which

would allow the length, in time, of different routes to be estimated. Drivers can then

be routed in a way that minimizes the trip time, and not just the distance covered.

This type of approach would not only decrease trip time, but would also help to

balance network traffic as vehicles would be routed around supersaturated network

areas.



Bibliography

K. Almejalli, K. Dahal, and M.A. Hossain. Intelligent Traffic Control Decision Sup-
port System. In Applications of Evolutionary Computing, volume 4448 of Lecture
Notes in Computer Science, pages 688–701. Springer Berlin/Heidelberg, 2007a.

K. Almejalli, K. Dahal, and M.A. Hossain. GA-Based Learning Algorithms to Iden-
tify Fuzzy Rules for Fuzzy Neural Networks. Seventh International Conference on
Intelligent Systems Design and Applications (ISDA 2007), pages 289–296, October
2007b.

K. Almejalli, K. Dahal, and M.A. Hossain. Real Time Identification of Road Traffic
Control Measures. In Advances in Computational Intelligence in Transport, Lo-
gistics, and Supply Chain Management, volume 144 of Studies in Computational
Intelligence, pages 63–80. Springer Berlin/Heidelberg, 2008.

K. Almejalli, K. Dahal, and M.A. Hossain. An intelligent multi-agent approach for
road traffic management systems. 18th IEEE International Conference on Control
Applications, pages 825–830, July 2009.

AudiWorld. Audi, researchers at four U.S. universities begin work on so-
lutions to urban mobility challenges. http://www.audiworld.com/news/11/

urban-mobility/, August 2011.

P.G. Balaji and D. Srinivasan. Multi-Agent System in Urban Traffic Signal Control.
Computational Intelligence Magazine, IEEE, 5(4):43–51, 2010.

G. Balan and S. Luke. History-based traffic control. In Proceedings of the fifth
international joint conference on Autonomous agents and multiagent systems, pages
616–621. ACM, 2006.

M.C. Bell and R.D. Bretherton. Ageing of fixed-time signal plans. In Proceedings of
the Second IEE Conference on Road Traffic Control, 1986.

H.G. Beyer and H.P. Schwefel. Evolution strategies - A comprehensive introduction.
Natural Computing, 1(1):3–52, 2002.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to
Artificial Systems. Oxford, 1999.

S. Chiu and S. Chand. Adaptive traffic signal control using fuzzy logic. In Fuzzy
Systems, 1993., Second IEEE International Conference on, pages 1371–1376. IEEE,
1993a.

133



134

S. Chiu and S. Chand. Self-organizing traffic control via fuzzy logic. In Decision and
Control, 1993., Proceedings of the 32nd IEEE Conference on, pages 1897–1902.
IEEE, 1993b.

Chih-hsun Chou and Jen-Chao Teng. A fuzzy logic controller for traffic junction
signals. Information Sciences, 143(1-4):73–97, 2002.

M.C. Choy, R.L. Cheu, D. Srinivasan, and F. Logi. Real-time coordinated signal
control using agents with online reinforcement learning. Proc. 82nd Annual Meeting
of the Transportation Research Board, pages 1–21, 2003a.

M.C. Choy, D. Srinivasan, and R.L. Cheu. Cooperative, hybrid agent architecture for
real-time traffic signal control. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on, 33(5):597–607, 2003b.

Seung-Bae Cools, C. Gershenson, and B. D’Hooghe. Self-Organizing Traffic Lights:
A Realistic Simulation. In Advances in Applied Self-organizing Systems, Advanced
Information and Knowledge Processing, pages 41–50. Springer London, 2008.

J. Cuena. Knowledge-based models for adaptive traffic management systems. Trans-
portation Research Part C: Emerging Technologies, 3(5):311–337, October 1995.

B.C. da Silva, E.W. Basso, A.L.C. Bazzan, and P.M. Engel. Dealing with non-
stationary environments using context detection. Proceedings of the 23rd interna-
tional conference on Machine learning - ICML ’06, pages 217–224, 2006.

D. de Oliveira and A.L.C. Bazzan. Swarm Intelligence Applied to Traffic Lights Group
Formation. VI Encontro Nacional de Inteligencia Artificial, pages 1003–1012, 2007.

D. de Oliveira, P.R. Ferreira, A.L.C. Bazzan, and F. Klügl. A swarm-based approach
for selection of signal plans in urban scenarios. Ant Colony, Optimization and
Swarm Intelligence, 3172:143–156, 2004.

D. de Oliveira, A.L.C. Bazzan, B.C. da Silva, E.W. Basso, L. Nunes, R. Rossetti,
E. de Oliveira, R. da Silva, and L. Lamb. Reinforcement learning based con-
trol of traffic lights in non-stationary environments: a case study in a microscopic
simulator. In Proceedings of the 4th European Workshop on Multi-Agent Systems
(EUMAS06), pages 31–42, 2006.

B. De Schutter, S.P. Hoogendoorn, H. Schuurman, and S. Stramigioli. A multi-agent
case-based traffic control scenario evaluation system. In Intelligent Transportation
Systems, 2003. Proceedings. The IEEE 6th International Conference on, volume 1,
pages 678–683. IEEE, 2003.

K. Decker, A. Pannu, K. Sycara, and M. Williamson. Designing behaviors for infor-
mation agents. In Proceedings of the first international conference on Autonomous
agents, pages 404–412, 1997.



135

K. Dresner. Multiagent traffic management: Opportunities for multiagent learning.
Learning and Adaption in Multi-Agent Systems, 3898:129–138, 2006.

K. Dresner and P. Stone. Multiagent traffic management: A reservation-based inter-
section control mechanism. In AAMAS ’04 Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems-Volume 2, vol-
ume 2, pages 530–537. IEEE Computer Society, 2004.

K. Dresner and P. Stone. Multiagent traffic management: An improved intersection
control mechanism. In Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, pages 471–477. ACM, 2005.

K. Dresner and P. Stone. Traffic intersections of the future. AAAI’06 proceedings of
the 21st national conference on Artificial intelligence, 2:1593–1596, 2006.

K. Dresner and P. Stone. A multiagent approach to autonomous intersection man-
agement. Journal of Artificial Intelligence Research, 31:591–656, 2008.

A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

N.V. Findler and J. Stapp. A Distributed Approach to Optimized Control of Street
Traffic Signals. Journal of Transportation Engineering, 118:99–110, 1992.

J. France and A.A. Ghorbani. A multiagent system for optimizing urban traffic. In-
telligent Agent Technology, 2003. IAT 2003. IEEE/WIC International Conference
on, pages 411–414, 2003.

J. Garćıa-Nieto, A. Carolina Olivera, and E. Alba. Swarm intelligence for traffic light
scheduling: Application to real urban areas. Engineering Applications of Artificial
Intelligence, 2011.

C. Gershenson. Self-organizing Traffic Lights. Complex Systems, 16:29–53, 2005.

Google Inc. Google Maps with Street View. http://maps.google.com/help/maps/
streetview/, July 2011.

A. Hegyi, B. De Schutter, S. Hoogendoorn, R. Babuska, H. van Zuylen, and H. Schu-
urman. A fuzzy decision support system for traffic control centers. ITSC 2001.
2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585),
pages 358–363, 2001.

D. Helbing, R. Jiang, and M. Treiber. Analytical investigation of oscillations in
intersecting flows of pedestrian and vehicle traffic. Phys. Rev. E, 72(4):046130,
2005.

T.H. Heung, T.K. Ho, and Y.F. Fung. Coordinated road-junction traffic control by
dynamic programming. Intelligent Transportation Systems, IEEE Transactions on,
6(3):341–350, 2005.



136

J.H. Holland. Adaptation in natural and artificial systems: an introductory analy-
sis with applications to biology, control, and artificial intelligence. University of
Michigan Press, Ann Arbor, 1975.

R. Hoyer and U. Jumar. An advanced fuzzy controller for traffic lights. Annual
Review in Automatic Programming, 19:67–72, 1994.

L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995.
Proceedings., IEEE International Conference on, volume 4, pages 1942–1948. IEEE,
1995.

J. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection). The MIT Press, 1992.

S. Lämmer and D. Helbing. Self-control of traffic lights and vehicle flows in urban
road networks. Journal of Statistical Mechanics: Theory and Experiment, 4, 2008.

J.H. Lee and H. Lee-Kwang. Distributed and cooperative fuzzy controllers for traffic
intersections group. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 29(2):263–271, 1999.

M.J. Lighthill and G.B. Whitham. On kinematic waves. I. Flood movement in long
rivers. Proc. R. Soc. Lond. A, 229(1178):281–316, 1955.

MATSIM - Toronto. http://www.matsim.org/scenario/toronto, July 2011.

D. McKenney. Sumo routing files. http://sikaman.dyndns.org:8888/index.php?
page=traffic-project, August 2011.

M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1998. ISBN
0262631857.

D.J. Montana. Strongly typed genetic programming. Evolutionary computation, 3
(2):199–230, 1995.

D.J. Montana and S. Czerwinski. Evolving control laws for a network of traffic signals.
In GECCO ’96 Proceedings of the First Annual Conference on Genetic Program-
ming, pages 333–338. MIT Press, 1996.

MoreVTS. http://sourceforge.net/projects/morevts/, April 2011.

Y. Murat and E. Gedizlioglu. A fuzzy logic multi-phased signal control model for
isolated junctions. Transportation Research Part C: Emerging Technologies, 13(1):
19–36, February 2005.



137

J. Niittymaki and M. Pursula. Signal control using fuzzy logic. Fuzzy sets and systems,
116(1):11–22, 2000.

OpenStreetMap. http://www.openstreetmap.org, February 2011.

J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips. GPU
Computing. Proceedings of the IEEE, 96(5):879–899, 2008.

M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang. Review of
Road Traffic Control Strategies. Proceedings of the IEEE, 91(12):2043–2067, 2003.

C.P. Pappis and E.H. Mamdani. A Fuzzy Logic Controller for a Trafc Junction.
Systems, Man and Cybernetics, IEEE Transactions on, 7(10):707–717, 1977.

L.S. Passos and R. Rossetti. Traffic Light Control Using Reactive Agents. In Infor-
mation Systems and Technologies (CISTI), 2010 5th Iberian Conference on, pages
1–6. IEEE, 2010.

M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley Series in Probability and Mathematical Statistics: Applied Probability
and Statistics. John Wiley & Sons, Inc., 1994.

A. Rathi. A control scheme for high density sectors. Transportation Research Part
B: Methodological, 22(2):81–101, 1988.

C.H. Reinsch. Smoothing by spline functions. Numerische Mathematik, 10(3):177–
183, October 1967.

D.I. Robertson and R.D. Bretherton. Optimizing networks of traffic signals in real
time-the SCOOT method. IEEE Transactions on Vehicular Technology, 40(1):
11–15, 1991.

J. Sabater and C. Sierra. Reputation and social network analysis in multi-agent
systems. In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1, pages 475–482. ACM, 2002.

J. Sánchez, M. Galán, and E. Rubio. Genetic algorithms and cellular automata: A
new architecture for traffic light cycles optimization. In Evolutionary Computation,
2004. CEC2004. Congress on, volume 2, pages 1668–1674. IEEE, 2004.

J. Sánchez, M. Galán, and E. Rubio. Applying a Traffic Lights Evolutionary Opti-
mization Technique to a Real Case: “Las Ramblas” Area in Santa Cruz de Tener-
ife. In IEEE Transactions on Evolutionary Computation, volume 12, pages 25–40.
IEEE, 2008.



138

J. Sánchez, M. Galán, and E. Rubio. Traffic signal optimization in “la almozara”
district in saragossa under congestion conditions, using genetic algorithms, traffic
microsimulation, and cluster computing. Intelligent Transportation Systems, IEEE
Transactions on, 11:132–141, March 2010.

N. Schurr, J. Marecki, M. Tambe, P. Scerri, N. Kasinadhuni, and J. Lewis. The future
of disaster response: Humans working with multiagent teams using DEFACTO. In
AAAI Spring Symposium on AI Technologies for Homeland Security, 2005.

J.C. Spall and D.C. Chin. A model-free approach to optimal signal light timing
for system-wide traffic control. In Proceedings of 1994 33rd IEEE Conference on
Decision and Control, pages 1868–1875. IEEE, 1994.

J.C. Spall and D.C. Chin. Traffic-responsive signal timing for system-wide traffic
control. Transportation Research Part C: Emerging Technologies, 5(3-4):153–163,
August 1997.

D. Srinivasan, M.C. Choy, and R.L. Cheu. Neural Networks for Real-Time Traffic
Signal Control. IEEE Transactions on Intelligent Transportation Systems, 7(3):
261–272, September 2006.

M. Steingröver, R. Schouten, S. Peelen, E. Nijhuis, and B. Bakker. Reinforcement
learning of traffic light controllers adapting to traffic congestion. In Proceedings of
the 17th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2005),
pages 216–223, 2005.

Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari,
S. Tadaki, and S. Yukawa. Traffic jams without bottlenecks: experimental evidence
for the physical mechanism of the formation of a jam. New Journal of Physics, 10,
2008.

SUMO Features. http://sourceforge.net/apps/mediawiki/sumo/index.php?

title=Sumo_at_a_Glance, June 2011.

SUMO Traffic Simulator. http://sumo.sourceforge.net, July 2011.

G. Theraulaz, E. Bonabeau, and J.N. Denuebourg. Response threshold reinforcements
and division of labour in insect societies. Proceedings of the Royal Society B:
Biological Sciences, 265(1393):327–332, February 1998.

TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/, July
2011.

UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/, July 2011.



139

M. Vasirani and S. Ossowski. A market-inspired approach to reservation-based ur-
ban road traffic management. In Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1, pages 617–624. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2009.

VISSIM. http://www.vissim.com/, April 2011.

A. Vogel, C. Goerick, and W. Von Seelen. Evolutionary algorithms for optimizing
traffic signal operation. In Proceedings of the European Symposium on Intelligent
Techniques, 2000.

W. Wei and Y. Zhang. FL-FN based traffic signal control. In Fuzzy Systems, 2002.
FUZZ-IEEE’02. Proceedings of the 2002 IEEE International Conference on, pages
296–300, 2002.

W. Wei, Y. Zhang, J.B. Mbede, Z. Zhang, and S. Jingyan. Traffic signal control using
fuzzy logic and MOGA. Systems, Man, and Cybernetics, 2001 IEEE International
Conference on, 2:1335–1340, 2001.

M.P. Wellman. A market-oriented programming environment and its application
to distributed multicommodity flow problems. Journal of Artificial Intelligence
Research, 1:1–23, 1993.

M.A. Wiering. Multi-agent reinforcement learning for traffic light control. In Pro-
ceedings of the Seventeenth International Conference on Machine Learning, pages
1151–1158, 2000.

M.A. Wiering, J. Van Veenen, J. Vreeken, and A. Koopman. Intelligent traffic light
control. ERCIM News, European Research Consortium for Informatics and Math-
ematics, 53:40–41, 2003.

M.A. Wiering, J. Vreeken, J. Van Veenen, and A. Koopman. Simulation and op-
timization of traffic in a city. Intelligent Vehicles Symposium, 2004 IEEE, pages
453–458, 2004.

Wikipedia. Alpha-Beta Filter. http://en.wikipedia.org/wiki/Alpha_beta_

filter, June 2011.

U. Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo. Center for
Connected Learning and Computer-Based Modeling, Northwestern University.
Evanston, IL., 1999.

U. Wilensky. NetLogo Traffic Grid model. http://ccl.northwestern.edu/

netlogo/models/TrafficGrid. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL., 2003.

M.J. Wooldridge. An introduction to multiagent systems. John Wiley and Sons, 2002.



140

L.A. Zadeh. Fuzzy logic: computing with words. Fuzzy Systems, IEEE Transactions
on, 4(2):103–111, 1996.



Appendix A

Further Examples of Fixed vs. Adaptive Signal Plans

This appendix includes a number of figures which further demonstrate the perfor-

mance advantaged of adaptive signal over a fixed traffic light controller. Each of

the figures included here present both the average vehicle counts and average vehicle

speed aggregated over 15 minute intervals for specific areas of the network. Also, each

figure further shows the problematic nature of a fixed signal controller, as the number

of vehicles rise dramatically in a number of cases. Furthermore, it can be seen that

while the adaptive algorithm can also experience decreased traffic flow during high

volume scenarios, it is capable of recovering from these situations quicker than a fixed

control approach.

141



142

Figure A.1: Aggregate average number of vehicles and speed for Wellington between
Kent and Bank

(a) Average vehicles

(b) Average vehicle speed



143

Figure A.2: Aggregate average number of vehicles and speed for Wellington between
Bay and Lyon

(a) Average vehicles

(b) Average vehicle speed



144

Figure A.3: Aggregate average number of vehicles and speed for Queen between West
and Bay

(a) Average vehicles

(b) Average vehicle speed



145

Figure A.4: Aggregate average number of vehicles and speed for Laurier between
Metcalfe and O’Connor

(a) Average vehicles

(b) Average vehicle speed



146

Figure A.5: Aggregate average number of vehicles and speed for the entirety of Laurier
Ave.

(a) Average vehicles

(b) Average vehicle speed


